方格精選

關於AI,每個產品經理都必須瞭解的三個問題/Bastiane Huang

更新於 發佈於 閱讀時間約 7 分鐘

上個月,筆者在舊金山舉辦了第二次的AI與ML產品經理論壇;五位AI/ML產品經理分別來自矽谷新創、Google、YouTube等科技公司,橫跨醫療、製造業、App等產業與產品類型,和我們一起進行了豐富多元的討論。本文所節錄的,是會中獲得熱烈討論的三個重要議題。

Bastiane Huang
Bastiane Huang目前在舊金山的AI/Robotics新創公司擔任產品經理,擁有近10年產品行銷及市場開發管理經驗;曾在美國《機器人商業評論》及《哈佛商業評論》發表文章及個案研究。如果你也對Robotics 2.0(AI-Enabled Robotics)、產品管理、Future of Work有興趣,歡迎追蹤她的最新訊息
我們涵蓋了各種各樣的主題:從最適合ML(機器學習)的應用案例類型、管理ML產品的獨特挑戰、產品規劃以及優先順序、常見錯誤、與ML工程師的最佳合作方法,一直到作為成功ML產品經理所需要的基本技能等等。
以下節錄三個當晚討論到的重要問題。

ML模型難以解釋,該怎麼向用戶說明?

在先前的文章〈給產品經理的AI開發指南〉中,我談到了可解釋性問題對管理ML產品帶來的重大挑戰。ML與一般軟體不同的是,工程師不會為ML演算法定義一組規則,而是提供訓練數據,讓神經網路來自行學習。
開發ML也與其他軟體工程不同:ML產品需要更多實驗、也涉及更多的不確定性和可變性。軟體工程是一個「為機器編寫規則」的「確定性」過程,而機器學習則具有更大的彈性;因為它可以自行學習,而不需要我們來編寫規則。
ML產品需要更多實驗、也涉及更多的不確定性和可變性。
但是,這也意味著ML模型像是一個黑盒子,我們只知道輸入和輸出,卻不知道它內部的實際運作方式。為了解決這個問題,科學家們開始研究所謂「explainable AI」(可解釋的人工智慧),研究如何在ML模型開發之前、開發期間、或是開發之後解釋AI所做出的判斷。
ML的黑盒子(本圖由作者提供)。
然而,即使我們能夠將AI的判斷解釋得更好 ,相較於軟體程式,機器學習仍然涉及更多的機率與不確定性;因此,對於ML產品經理來說,更重要的問題是:我們如何向用戶說明這種不確定性、並且讓他們接受?
在AI時代,用戶體驗(UX)將比以往更加重要!
根據最新研究,有三分之一以AI技術為基礎的醫療保健軟體系統服務(SaaS)公司,都正在研究AI醫療診斷。但是,ML的不確定性和缺乏可解釋性,讓診斷結果更難獲得臨床醫生或病人家屬的信任。
Mike Ng是矽谷醫療新創公司「Remedy」的產品策略負責人、也是共同創辦人;這是一家利用可解釋的深度學習(deep learning)和強化學習(reinforcement learning)技術,來進行慢性疾病篩查的公司。他提供了將ML轉化為UX問題的有效方法:
我們選擇不直接陳述機器預測的結果,而是將預測描述為:由於A、B、和C原因,讓某位患者得到某種疾病的機率比一般人高出五倍。
這樣一來,我們將模型預測的有用資訊提供給醫生,以便醫生可以使用這些資訊來做出決策。
因為ML更具不確定性,因此顯示每個預測的可信程度(confidence level),也是引導使用者正確期望的一種方式;也就是說,與其為使用者提供決策,不如考慮呈現數據,讓使用者自己做出選擇。
鼓勵使用者提供回饋也相當重要。即使95%的時間模型能夠預測正確結果,但仍有5%的情況下模型可能出錯,我們需要能夠有效而順暢的的處理這些錯誤

如何找出最適於用ML解決的用戶問題?

ML可用於解決各種問題,但就核心應用案例而言,ML最適合決策或預測。我們可以進一步將ML應用程式分為三種類型:
  • 檢測/檢查(detection/inspection):幫助使用者識別缺陷或異常,例如銀行或保險的詐欺檢測,或是生產線上的產品缺陷檢測。
  • 模式識別(pattern recognition):幫助使用者篩選大量數據;包括推薦、排序、個人化、分類、預測維護、以及人機互動等等。例如針對Alexa或Google Home等智慧音箱進行自然語言處理(NLP)。
  • 高維認知(high dimension cognition):幫助使用者篩選並處理大量高維感官數據;例如:人工智慧機器人、自動駕駛汽車等等。
ML的三個主要應用方向(本圖由作者提供)。
作為產品經理,你需要知道什麼時候應該使用什麼ML技術;更重要的是「什麼時候不該使用ML」。例如,當你的產品需要高精度或可解釋性時,就可能需要考慮使用其他方法來解決用戶問題。
但是,瞭解ML的應用案例只是第一步。要實際開發客戶需要的解決方案,產品經理必須成為技術人員和使用者之間的溝通橋樑;因為技術人員瞭解ML,但並不太理解客戶需求,而使用者對產品應用案例有豐富經驗、也希望應用ML,但卻不知道從何開始。
這兩組人通常不會說同一種語言。作為產品經理,你需要花費大量時間與工程師或科學家合作,以瞭解ML的潛力和侷限性;你也應該經常與客戶交談,以確定他們的痛點、並思考團隊可以建構怎樣的解決方案,來解決客戶的問題。

與ML研究人員和工程師的最佳合作方法是什麼?

在回答這個問題之前,首先需要弄清楚的是:你的目標是什麼?公司的目標又是什麼?
如果你的公司想發表更多的論文,那麼擁有一個純粹的研究團隊是正確的;然而大多數公司想做的,都是設計解決使用者問題的產品,而不是單純做研究。所以,能將公司的目標說明清楚,你才能吸引到對的人。
將公司的目標說明清楚,你才能吸引到對的人。
其次,一旦你有合適的人才,要確保他們能與公司的其他部門保持聯繫,以瞭解我們的產品藍圖。例如可以把ML研究人員與工程師放在同一個團隊中,以便構建早期原型,來測試關鍵功能並改良產品,而不是花費大量時間做學術研究。
由於ML產品的不確定性,我們希望給ML科學家更多的時間和空間來探索和實驗;但我們必須讓團隊專注於客戶真正需要、並且願意付費使用的功能。這就是為什麼我們需要對實驗設定時間限制,並鼓勵團隊儘早、並且經常測試模型
另一個有趣的觀點是,ML不僅需要技術變革,也需要組織變革。作為ML產品經理,你可以讓其他合作夥伴瞭解ML產品為何更具有挑戰性、同時幫忙解決潛在衝突。
就像我之前提到的:必須清楚認識開發ML產品、以及軟體產品之間的區別,因為沒有一個組織流程是可以一體適用的;無論是衝刺(sprint)流程、規劃、或是組織,都必須視需要隨時調整。

結語

「定義數據策略」並不是資料科學家的責任,因為這應該是一個策略決定;即使在構建ML產品之前,公司內部也必須對策略達成一致意見。在你想進入的市場之中,是否已經有產業巨頭掌握了大多數資料?你應該不想在電子商務上與Amazon競爭、或是在位置資料方面與Google地圖匹敵。
所以,你必須找到目前還沒有一家公司能主導客戶資料的藍海市場。
光是讓工程和產品團隊理解這些問題是不夠的。公關或行銷人員是否瞭解ML產品的性質與利弊?做出錯誤預測的後果和代價是什麼?公司準備好回答所有這些問題了嗎?
如果您想獲得所有未來活動的通知、或是收到AI和ML產品經理的Facebook私密群組邀請,請在此處訂閱;如果您有任何建議,也歡迎聯繫作者
即將進入廣告,捲動後可繼續閱讀
為什麼會看到廣告
avatar-img
1.4K會員
2.0K內容數
為您送上頂尖作者的最新管理與科技產業思維。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
讀者們有沒有發現?好吃的餐廳通常服務很差,而服務很好的餐廳,通常口味又很普通;如果餐點好吃,服務又是一流的,那麼價格肯定不菲。這就是一種所謂的「常數定律」:主要條件因素的加總,往往是一個常數。
天使投資人在想什麼?你也可以成為天使投資人嗎?即使你是創業者,如果能以投資人的角度來思考如何評價創業團隊,會是非常好的練習。本文就來為大家剖析,天使會如何評判創業團隊的價值──經過換位思考,你也能發掘出獲得投資人青睞的訣竅。
最近疫情肆虐,各國因應方法不一;有些靠經驗、有些靠佛心,但也有人試圖用學術方法,推導出合理的、將損害壓到最低的策略。「賽局理論」也是這些學術方法之一,但但遺憾的是,部分相關的論述方式並不準確。
現在,讓我們再一次看看Apple會不會在Mac上拋棄「過時」的Intel x86系列處理器,而改用自家設計的ARM架構晶片。這個過程聽起來好像很不錯,然而如果在2006年要做很容易,在2021年就不是那麼簡單了。
不同時期的產品、市場、企業文化,對於經營理念都有不同的需求;許多顧問公司雖然專業,但基於自身的立場,並不見得能提供最適合、最量身打造的解法。依照筆者的經驗與理念,最核心的原則就是與時俱進、化繁為簡。
最近的日本經濟遭到消費稅調漲、哈吉貝強颱、以及武漢肺炎疫情接二連三重創;然而其中仍有一些因素並不是不可抗力的,而是人為的失策。接下來,甚至可能面臨奧運是否延期、甚至停辦的壓力……。種種紛至沓來的因素,會如何侵蝕這個島國?
讀者們有沒有發現?好吃的餐廳通常服務很差,而服務很好的餐廳,通常口味又很普通;如果餐點好吃,服務又是一流的,那麼價格肯定不菲。這就是一種所謂的「常數定律」:主要條件因素的加總,往往是一個常數。
天使投資人在想什麼?你也可以成為天使投資人嗎?即使你是創業者,如果能以投資人的角度來思考如何評價創業團隊,會是非常好的練習。本文就來為大家剖析,天使會如何評判創業團隊的價值──經過換位思考,你也能發掘出獲得投資人青睞的訣竅。
最近疫情肆虐,各國因應方法不一;有些靠經驗、有些靠佛心,但也有人試圖用學術方法,推導出合理的、將損害壓到最低的策略。「賽局理論」也是這些學術方法之一,但但遺憾的是,部分相關的論述方式並不準確。
現在,讓我們再一次看看Apple會不會在Mac上拋棄「過時」的Intel x86系列處理器,而改用自家設計的ARM架構晶片。這個過程聽起來好像很不錯,然而如果在2006年要做很容易,在2021年就不是那麼簡單了。
不同時期的產品、市場、企業文化,對於經營理念都有不同的需求;許多顧問公司雖然專業,但基於自身的立場,並不見得能提供最適合、最量身打造的解法。依照筆者的經驗與理念,最核心的原則就是與時俱進、化繁為簡。
最近的日本經濟遭到消費稅調漲、哈吉貝強颱、以及武漢肺炎疫情接二連三重創;然而其中仍有一些因素並不是不可抗力的,而是人為的失策。接下來,甚至可能面臨奧運是否延期、甚至停辦的壓力……。種種紛至沓來的因素,會如何侵蝕這個島國?
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
AI 功能如何導入介面?產品如何運用 AI?AI 如何讓使用者更便利操作功能?幾乎是近幾年產品經理在規劃功能時需要考量的事情,每個系統化、固定的操作流程,都開始被詢問「能否導入 AI」,因此這篇想記錄在電商平台我觀察到可以應用 AI 的場景。
Thumbnail
學習生成式AI,不僅僅是掌握幾個工具,而是從全方位了解AI的發展範疇及其潛力。我經常在企業教授AI課程時,會遇到HR詢問:某些工具用不上,可以不教嗎?當然可以,但如果同仁不了解生成式AI在「數位內容」上的廣泛應用,又如何掌握大語言模型的發展邊界?
Thumbnail
AI 的應用已經成為企業管理的重點。本文探討 AI 的三層次應用,包括如何與團隊協作提升工作表現、融合好奇心與同理心,以及恆毅力在工作中的重要性。同時,分析 Apple Intelligence 及其策略,瞭解 AI 背後的機會與挑戰,讓企業在這個數據驅動的時代中脫穎而出。
Thumbnail
產品經理想做 AI 產品要懂哪些基本名詞?這篇整理我過往參與 AI 自傳生成時,和 NLP 工程師有討論到的概念,AI 應用目前還尚未普及,未來我會再陸續整理不同功能或產業需要知道的 AI 基礎知識。
Thumbnail
現代AI產品經理需要具備的六大核心能力 一、策略與願景:專注於改善用戶生活 二、負責任的AI管理:風險和責任 三、深入了解數據:數據來源和安全 四、模型開發與生命周期 五、評估:系統性能和輸出的評估 六、推向市場:從內部測試到外部發布
Thumbnail
本文講述了設計師進行產品規劃時需要融入商業策略,並深入瞭解用戶需求和使用方式的重要性。同時,透過使用者訪談和對各種競品的研究,設計師可以建立良好的商業策略思維,以實現產品的成長和用戶滿意度。
Thumbnail
近年來,生成式AI對市場帶來了巨大變革,然而,企業的AI專案卻面臨許多部署和失敗的問題。從MIT Sloan Management Review的研究中,我們發現數據科學家在尋找防止AI模型失敗的模式上面存在許多問題。本文提供了三個觀點,協助缺乏技術的高階主管針對辨識有效的AI模型和數據集提出方法。
機器學習是什麼? 簡單來說,機器學習就是訓練機器尋找Function的一段過程,而這個Function可以幫助我們解決我們遇到的問題,或是幫助我們
Thumbnail
📌 重點:根據生成式 AI 功能為用戶提供的價值,大致可以分成核心(core)、升級(Upgrade) 和附加(add-on) 三大類別,創辦人可進一步考量成本等因素,來制定相對應的定價與收費模式。
Thumbnail
本文探討了科技公司打造成功產品背後的三大關鍵:策略制定、敏捷開發和數據分析。透過觀察市場需求、建立MVP測試、數據統計與分析,科技公司可以更好地執行產品策略,提高產品成功的機會。另外,也介紹了產品經理的角色與重要性,以及深入分析用戶需求和產品設計的方法。
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
AI 功能如何導入介面?產品如何運用 AI?AI 如何讓使用者更便利操作功能?幾乎是近幾年產品經理在規劃功能時需要考量的事情,每個系統化、固定的操作流程,都開始被詢問「能否導入 AI」,因此這篇想記錄在電商平台我觀察到可以應用 AI 的場景。
Thumbnail
學習生成式AI,不僅僅是掌握幾個工具,而是從全方位了解AI的發展範疇及其潛力。我經常在企業教授AI課程時,會遇到HR詢問:某些工具用不上,可以不教嗎?當然可以,但如果同仁不了解生成式AI在「數位內容」上的廣泛應用,又如何掌握大語言模型的發展邊界?
Thumbnail
AI 的應用已經成為企業管理的重點。本文探討 AI 的三層次應用,包括如何與團隊協作提升工作表現、融合好奇心與同理心,以及恆毅力在工作中的重要性。同時,分析 Apple Intelligence 及其策略,瞭解 AI 背後的機會與挑戰,讓企業在這個數據驅動的時代中脫穎而出。
Thumbnail
產品經理想做 AI 產品要懂哪些基本名詞?這篇整理我過往參與 AI 自傳生成時,和 NLP 工程師有討論到的概念,AI 應用目前還尚未普及,未來我會再陸續整理不同功能或產業需要知道的 AI 基礎知識。
Thumbnail
現代AI產品經理需要具備的六大核心能力 一、策略與願景:專注於改善用戶生活 二、負責任的AI管理:風險和責任 三、深入了解數據:數據來源和安全 四、模型開發與生命周期 五、評估:系統性能和輸出的評估 六、推向市場:從內部測試到外部發布
Thumbnail
本文講述了設計師進行產品規劃時需要融入商業策略,並深入瞭解用戶需求和使用方式的重要性。同時,透過使用者訪談和對各種競品的研究,設計師可以建立良好的商業策略思維,以實現產品的成長和用戶滿意度。
Thumbnail
近年來,生成式AI對市場帶來了巨大變革,然而,企業的AI專案卻面臨許多部署和失敗的問題。從MIT Sloan Management Review的研究中,我們發現數據科學家在尋找防止AI模型失敗的模式上面存在許多問題。本文提供了三個觀點,協助缺乏技術的高階主管針對辨識有效的AI模型和數據集提出方法。
機器學習是什麼? 簡單來說,機器學習就是訓練機器尋找Function的一段過程,而這個Function可以幫助我們解決我們遇到的問題,或是幫助我們
Thumbnail
📌 重點:根據生成式 AI 功能為用戶提供的價值,大致可以分成核心(core)、升級(Upgrade) 和附加(add-on) 三大類別,創辦人可進一步考量成本等因素,來制定相對應的定價與收費模式。
Thumbnail
本文探討了科技公司打造成功產品背後的三大關鍵:策略制定、敏捷開發和數據分析。透過觀察市場需求、建立MVP測試、數據統計與分析,科技公司可以更好地執行產品策略,提高產品成功的機會。另外,也介紹了產品經理的角色與重要性,以及深入分析用戶需求和產品設計的方法。