統全數理.基礎教學

閱讀時間約 7 分鐘

子集指的是,某事物歸類的內容事物,譬如答數,指的是算式的某種結果值
答數其子集有商數、餘數、全餘數、眾數…等,皆屬父集的答數

總參數量.請參考:
眾數.請參考
答案參數.請參考:
首先,讓我們介紹最基礎的答數如何判斷

第一課:餘數(加法)

指將一個加法數,作為一個時輪的值
單數,即加法的組成,如:
1+1.餘數=2
原本,要計算三個1,依次需要3次時輪
即:
1⊙0+1.餘數=1
2⊙1+1.餘數=2
3⊙2+1.餘數=3
紅色部分為「時輪」
在一個公式中,每個時輪都代表了一個「運算符」
譬如:
1-2+3×2
共有三個「運算符」,所以其時輪數三個,即:
1⊙1-2=-1
2⊙-1+3=2
3⊙2×2=4
________
商數:3(商數,即算式停止時的時輪)
餘數:4(餘數,即運算到最後一個數字時的餘數)
但是當兩個加法時輪,結合為一次的時輪值,它就變成了「整數」
即:
2=1+1.餘數
好處是,用一個整數時,用的時輪值僅有1
如:
1⊙0+2.餘數=2
用一次的時輪取代了兩次時輪
上者方式,可以幫助程式碼上,人們藉由時輪展開公式,能理解與找出「更簡潔更快速的運算方式」,盡量用一個時輪值,進行一次性運算



第二課:商數(除法)
(a÷b)=(a)無限(-b)限制(餘數<b)


事實上也就等同於a無限減b直到此算式的餘數值小於b時,為公式停止時
此時公式停止時的該時輪餘數值,為餘數
此時公式停止時的所在時輪數,為商數
(圖.1:除法公式的完整定義)


上圖公式,為(圖-2)公式的「步驟詳細版」
(圖.2)用一個符號表達出(圖.1)步驟之縮寫公式)

(5’被算數)÷(2’算數)
1⊙(5-2.餘數=3)
2⊙(3-2.餘數=1)
滿足(餘數<2’算數)
___________
商數:2
餘數:1
上公式中,時輪2的公式,滿足了除法公式中的條件,即餘數小於2,在第二個時輪發生了
於是,這個算式在此終止
商數,即「時輪」的數量
餘數,即最後一個時輪的完成答數
上者是除法的「詳細公式」,你可以藉由時輪依次運算,一目瞭然過程
這很適合用於程式計算,人們可將詳細計算隱藏,點選會冒出其展開詳細公式,以方便理解
時輪是指「運算次數的架構」

疑惑1:為何算數後要標明答數



注意的是,規範數理中,需要標明算式的答數,才能夠分清楚如除法之:

10÷2.商數=5
10÷2.餘數=0

疑惑2:時輪與商數




(主公式):10÷2商數×3餘數

1⊙10÷2.商數=5
2⊙5×3.餘數=15

在上者自導公式中,(÷)是一個縮減公式,在此主公式中,除法的運算僅佔一個時輪

在除法這個子公式(×3餘數也是)中,除法的運算,其運算的時輪為商數

追根究柢之,(10÷2)的算式,展開來是:

(10)無限(-2)條件(餘數<2)
1⊙10-2餘數=8
2⊙8-2餘數=6
3⊙6-2餘數=4
4⊙4-2餘數=2
5⊙2-2餘數=0

主公式與子公式的不同是:
主公式的子公式僅佔一個時輪
子公式內部裡的運算過程可以有更多時輪,儘管在主公式看來只有一個時輪

子公式,分為:
無限條件公式:只有無限條件公式可以計算「商數」
拼湊公式:指用運算符號疊起來的公式,可以計算「餘數」,其商數絕對為「1」

無限條件公式如:
(被算數)無限(算式 )

拼湊公式如:
(參數1)公式a(參數2)公式b(參數3)公式c…
公式可以無限填入,其公式內可以填入無限條件公式的縮減公式

譬如:
(除法)(次方)…等,皆為無限條件公式,但是用一個符號簡化成拼湊公式之一

(被算數)無限(-算數)條件(餘數<算數)
簡化成:(被算數)÷(算數)

(被算數)無限(×被算數)條件(商數=算數)
簡化成:(被算數)︿(算數)

第三課:全餘數(概念數)





即如:定義偶數奇數自然數倒數等…可使用此
(自然數)=(0)無限(+1)之(全餘數)
(負數)=(0)無限(-1)之(全餘數)
(奇數)=(1)無限(+2)之(全餘數)
(偶數)=(0)無限(+2)之(全餘數)
偶數例:


你可以看到上者:

(偶數)=(0)無限(+2)之(全餘數)
0⊙0
1⊙0+2=2
2⊙2+2=4
3⊙4+2=6
__________
商數:無盡
餘數:不可定義
全餘數:0,2,4,6…

從上者,我們可以透過「全餘數」概念,表達出完整的「偶數」定義公式




簡單來說,全餘數即每個時輪的餘數,餘數可以有無限多,譬如奇數偶數自然數…等

所以全餘數的功用之一,是可以拿來「由公式定義絕對的無盡數意義」

此類餘數有無限多者,稱之無盡數(pi可能也是)


自創公式與常見算式例
公式,即用某種公式,填入幾個「可填入參數]組成

譬如:

一元代入公式

累積數(1)×(自然數)條件(商數=a)
僅有一個可填入參數a可寫成下者
設定:
@a
代入:
a→3
運算:
累積數(1)×(自然數)條件(商數=3)
1⊙1×1.餘數=1
2⊙1×2.餘數=2
3⊙2×3.餘數=6,滿足(商數=3)
___________
商數:3
餘數:6
所有時輪餘數:1,2,6

目前數學界已知的一元代入公式縮減,我知道的有「連乘積」「正值」「負值」
(或稱:單元符)
單元符,就是只要填一個數值,就可以運算的公式


兩元代入公式

如果「可填入參數」,有兩個,可以寫成下者:
累積數(@a)無限(+b)次數(2)
有兩個可填入參數,可以寫成下者
設定
a㊣b
代入
a→3
b→5
運算
累積數(@3)無限(+5)次數(2)
⊙(@3.餘數=6)+5.餘數=11
⊙(11)+(5).餘數=16,滿足(商數=2)
___________--
商數:2
餘數:16
所有時輪餘數:11,16

當代數學界中常見的二元代入公式(或稱運算符)
常見的有:「加法」「減法」「乘法」「除法」「次方」「次方根」



多元代入公式

如果可填入參數大於兩個以上,可以寫成下者
設定:
$(a)€(b)¢(c)£(d)
也可以寫成:
r(a,b,c,d)
a㊣b+c×(@d)+c
代入
a→3
b→5
c→1
d→2
運算
2㊣3+5-(@3)+2
1⊙3㊣5.餘數=16
2⊙16+5.餘數=21
3⊙21-(@3.餘數=6).餘數=(15)
4⊙15+2=17
_______
餘數;17
商數:4



一個可填入參數,可以將公式符號填入在前面
@a
(你可能疑惑為何不能放置在後面,因為在方式數理中,單位放在數值的後面
兩個可填入參數,可以將運算符號填入在兩個可填入參數的中間
a㊣b
兩個以下或大於兩個以上可填入參數
都可以用一個符號,後面接續所有參數,
f(a,b)
或是為每個參數創造一個符號
¥(a)€(b)

知道上者方式後,你可以創造任意公式,當然,公式創造方式不是只有這些,這裡僅是提出一個簡易的概論


附帶一提:所有概念都可以縮減

有趣的是,所有概念都可以被縮減成一個符號,如:
條件(商數=某數)
即等同於:
次數(某數)
(某數與等於的位置錯誤了,實際指稱在相反位置)


譬如全餘數概念,是為了解釋「無盡數」而有
你可以為了解釋公式,而發明某種概念數理

自創公式範例:


    1會員
    20內容數
    統全數理功用: 1.方便計算機計算過程直觀化,透過時輪系統,一步一步地理解計算過程 2.數理語言的統一規則化 3.可能方便初學者逐步理解 4.能無限延伸各種自創縮減公式
    留言0
    查看全部
    發表第一個留言支持創作者!
    張爾的沙龍 的其他內容
    統全數理功用: 1.方便計算機計算過程直觀化,透過時輪系統,一步一步地理解計算過程 2.數理語言的統一規則化 3.可能方便初學者逐步理解   算法案例   二元算法 統全數理法化   次方/平方/立方.次方根,如何計算對數?   算法案例:加法與減法   算法案例:乘法除法
    (被算數)×(10)︿(算數) =(被算數)立零(算數)     2000 =(2)立零(3) =(2)×(10)︿(3)   (10)=(1)立零(1) (200)=(2)立零(2) (6000)=(6)立零(3)   200×30=6000 (2)立零(2)×(3)立零(1) =(2
    統全數理功用: 1.方便計算機計算過程直觀化,透過時輪系統,一步一步地理解計算過程 2.數理語言的統一規則化 3.可能方便初學者逐步理解   算法案例   二元算法 統全數理法化   次方/平方/立方.次方根,如何計算對數?   算法案例:加法與減法   算法案例:乘法除法
    (被算數)×(10)︿(算數) =(被算數)立零(算數)     2000 =(2)立零(3) =(2)×(10)︿(3)   (10)=(1)立零(1) (200)=(2)立零(2) (6000)=(6)立零(3)   200×30=6000 (2)立零(2)×(3)立零(1) =(2
    你可能也想看
    Google News 追蹤
    Thumbnail
    這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
    Thumbnail
    上週末,世界拳壇最倍受矚目的一場重量級拳王統一戰,究竟誰能夠創造歷史、證明自己是重量級無可爭議的拳王?讓我們一起回顧一下這場經典的世紀大戰吧!
    Thumbnail
    火報記者 陳聖偉 / 綜合報導 船員阿Wen,2006年還只是大學生,因緣際會之下第一次接觸台灣股市引起興趣,畢業後卻遇上金融海嘯,大環境景氣不好,阿Wen最初的月薪僅有2.2萬元,生活壓力十分沉重,也曾一度對未來迷惘。然而阿Wen沒有放棄,在家人的鼓勵下,他毅然決然選擇轉換跑道,加入商船船員行業
    Thumbnail
    下週結算的多單,選擇權可以挑20400、20450、20500、20550這些履約價挑今天的低點佈局,因為主力如果今天只是要收租,那代表這週四五才會想發動行情。
    Thumbnail
    比賽前兩週,按照網路上初馬訓練的課表要開始減量了,週末LSD最多只到20K,我按照課表,也開始減量,週間甚至只跑兩次,上課週末還只練了速度跑9K,雖然內心十分焦慮不知道這樣到底行不行啊?但還是相信專業、相信科學,所以我也還是按照課表來。 我的初馬焦慮,好朋友蔡蔡完全感受到了!我就焦慮的一下子覺得可
    Thumbnail
    新北市是個傳統的城市,相較於其他都會型城市, 有自己很獨特的魅力。這裡仍保存了很多古蹟,也有如「435藝文特區」這樣的藝文基地。我們認為這裡很適合成為將古蹟優化、結合最新的科技,成為傳統文化再生的沃土。而有37年歷史的「當代傳奇劇場」本身就是結合傳統與創新的團隊,希望能夠在這裡把這樣的特質發揮出來。
    Thumbnail
    嗨大家,我是馬它!終於有時間來繼續更新美國碩士申請的內容了,繼上次分享前段準備期,今天要來分享中段申請期,包括註冊帳號及投遞文件的方式、撰寫各式文件的撰寫心得和小技巧以及諮詢學長姐的注意事項!
    Thumbnail
    嗨大家,我是馬它!暑假又是準備年底申請國外碩士的時候了,兩個月前我在我的IG和YouTube有做40頁申請碩士文件禮包的贈送&2支影片的講解,至今已經有300多人參與活動領取內容了~🙌
    Thumbnail
    夏天到了大家對於防曬的需求也變大了,各位應該都清楚目前市場上的防曬產品主要是添加化學性(有機)與物理性(無機)防曬成份,藉由吸收或反射紫外線來達到效果。
    Thumbnail
    小時候,喜愛文學的我,只專注在語文上, 對於數學真的一竅不通呀! 小學的數學並不太難, 但到了國中後, 真的很多觀念就開始混亂, 然而我有個數理資優的老爸, 老爸常常很有耐心教我數理, 每次他教我的時候, 可他卻從不生氣, 繼續淘淘不絕的講呀!講的! 當時我還在想:把答案告訴我啦! 記得國二時, 每
    Thumbnail
    世上有三種謊言:謊言、該死的謊言、統計數據。
    Thumbnail
    這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
    Thumbnail
    上週末,世界拳壇最倍受矚目的一場重量級拳王統一戰,究竟誰能夠創造歷史、證明自己是重量級無可爭議的拳王?讓我們一起回顧一下這場經典的世紀大戰吧!
    Thumbnail
    火報記者 陳聖偉 / 綜合報導 船員阿Wen,2006年還只是大學生,因緣際會之下第一次接觸台灣股市引起興趣,畢業後卻遇上金融海嘯,大環境景氣不好,阿Wen最初的月薪僅有2.2萬元,生活壓力十分沉重,也曾一度對未來迷惘。然而阿Wen沒有放棄,在家人的鼓勵下,他毅然決然選擇轉換跑道,加入商船船員行業
    Thumbnail
    下週結算的多單,選擇權可以挑20400、20450、20500、20550這些履約價挑今天的低點佈局,因為主力如果今天只是要收租,那代表這週四五才會想發動行情。
    Thumbnail
    比賽前兩週,按照網路上初馬訓練的課表要開始減量了,週末LSD最多只到20K,我按照課表,也開始減量,週間甚至只跑兩次,上課週末還只練了速度跑9K,雖然內心十分焦慮不知道這樣到底行不行啊?但還是相信專業、相信科學,所以我也還是按照課表來。 我的初馬焦慮,好朋友蔡蔡完全感受到了!我就焦慮的一下子覺得可
    Thumbnail
    新北市是個傳統的城市,相較於其他都會型城市, 有自己很獨特的魅力。這裡仍保存了很多古蹟,也有如「435藝文特區」這樣的藝文基地。我們認為這裡很適合成為將古蹟優化、結合最新的科技,成為傳統文化再生的沃土。而有37年歷史的「當代傳奇劇場」本身就是結合傳統與創新的團隊,希望能夠在這裡把這樣的特質發揮出來。
    Thumbnail
    嗨大家,我是馬它!終於有時間來繼續更新美國碩士申請的內容了,繼上次分享前段準備期,今天要來分享中段申請期,包括註冊帳號及投遞文件的方式、撰寫各式文件的撰寫心得和小技巧以及諮詢學長姐的注意事項!
    Thumbnail
    嗨大家,我是馬它!暑假又是準備年底申請國外碩士的時候了,兩個月前我在我的IG和YouTube有做40頁申請碩士文件禮包的贈送&2支影片的講解,至今已經有300多人參與活動領取內容了~🙌
    Thumbnail
    夏天到了大家對於防曬的需求也變大了,各位應該都清楚目前市場上的防曬產品主要是添加化學性(有機)與物理性(無機)防曬成份,藉由吸收或反射紫外線來達到效果。
    Thumbnail
    小時候,喜愛文學的我,只專注在語文上, 對於數學真的一竅不通呀! 小學的數學並不太難, 但到了國中後, 真的很多觀念就開始混亂, 然而我有個數理資優的老爸, 老爸常常很有耐心教我數理, 每次他教我的時候, 可他卻從不生氣, 繼續淘淘不絕的講呀!講的! 當時我還在想:把答案告訴我啦! 記得國二時, 每
    Thumbnail
    世上有三種謊言:謊言、該死的謊言、統計數據。