付費限定

中學以下的素養教育與經驗談:國二下數學篇──一次函數

更新於 發佈於 閱讀時間約 3 分鐘
函數,後半是圖形,大約在一二次段考之間,學生的表現會有不小的落差。但就筆者個人經驗,數學在二下像自然一樣爆掉的狀況反倒少見,應該是二上已經被洗禮過,該炸的都炸了,剩下的是持續,以及慢慢習慣步調追上的差別。

函數

嗯,好,慘。

這邊算是一個很大的盲點,所謂的懂得人不見得知道怎麼解釋,會解釋的不一定真的懂,但不懂的人一定連解釋都解釋不清。

用生活化的概念來講解函數定義

y=f(x)

我們稱y是x的函數,當x有所變化時,y會跟著有所改變。在此,x是自變數、y是應變數。這樣照課本定義講完會懂的人,應該很少才是。不是數學難懂,是對數學語言實在不熟,建議採取比較素養敘述的例子,筆者個人常用以下例子代表。

raw-image

有一個販賣機,只有三種飲料(別問哪來這種智障販賣機),價錢為10元、20元、30元,那麼自變數X就是投入的硬幣,應變數Y就是掉出來的飲料,也就是輸入什麼得到什麼,就這個怪奇飲料販賣機來說,我們就可以得到一個函數為:y=f(x)=10x。(可以在這時候加上條件說明,x為正整數的1、2、3)

類似這種生活例子,讓學生了解到什麼是自變數,什麼又是應變數,為何是多個x對應一個y,這會比敘述定義要有用的多。

另一個好用的例子,從我們讀書開始就有了,就是所謂的數字工廠,數字x是原料,丟到工廠(函數)中會跑出一個函數值y,例如:

  • y=2x+3
  • x=1,y=5
  • x=2,y=7
  • x=3,y=9

可以解釋成「原料x有1份,經過函數工廠後,跑出函數值y為5」、「原料x有2份,經過函數工廠後,跑出函數值y為7」。

至於y=3

這種函數被稱為常數函數,因為不管x多少,y永遠都是3,好比原料x不管有多少,但函數工廠就沒有x的需要,固定產出y=3。

總之就是一種比喻,先建立好一個形象,再去代數字練題目,效果會比較好。筆者的建議是,就用學習單把這種函數工廠概念,講完範例後立刻發下去練習加強印象。

「看不懂」不一定是看不懂題義,而是抓不到解法

一次函數的問題,如果只是代數字,筆者經驗上很少遇到,成績普遍不差,會錯是錯在上面說的函數定義,跟沒有數字時代不出所以然,另一部分會錯的,都算應用題,例如下面這個經典題型。

以行動支持創作者!付費即可解鎖
本篇內容共 3247 字、0 則留言,僅發佈於王立第二戰研所你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
王立第二戰研所
32.1K會員
1.4K內容數
王立第二戰研所在方格子的主要基地
王立第二戰研所的其他內容
2025/04/27
學生迷惘什麼?「不知道」大部分的學生到國三,再怎樣不想面對,也知道人生在轉折點。但其中多數人是不會過於焦慮的,因為成績好的考高中,差的選技職,而今天的技職體系,除了最前面的知名學校,其他間的差異對學生來說沒那麼大。
Thumbnail
2025/04/27
學生迷惘什麼?「不知道」大部分的學生到國三,再怎樣不想面對,也知道人生在轉折點。但其中多數人是不會過於焦慮的,因為成績好的考高中,差的選技職,而今天的技職體系,除了最前面的知名學校,其他間的差異對學生來說沒那麼大。
Thumbnail
2025/04/22
如果更誇張,不停的改革,更多樣的身份認同,沒有顯著的最終目標,只有浮動的臨時棲所,那就跟沒有終點一樣。想要取得身份認同者沒有辦法休息,永遠在跑馬拉松,每一次的改革成果,都只是為了下一次的改革積蓄能量,當事者無比疲累。 投機政客目的就是這個能量,將之化作一張張選票,你想像的終點並非他的目標,這就是永
Thumbnail
2025/04/22
如果更誇張,不停的改革,更多樣的身份認同,沒有顯著的最終目標,只有浮動的臨時棲所,那就跟沒有終點一樣。想要取得身份認同者沒有辦法休息,永遠在跑馬拉松,每一次的改革成果,都只是為了下一次的改革積蓄能量,當事者無比疲累。 投機政客目的就是這個能量,將之化作一張張選票,你想像的終點並非他的目標,這就是永
Thumbnail
2025/04/20
不是說父母影響不大,怎麼還要談這個? 不是不大,是父母如果本身的社會階級,會造成子女不想、不願意聽,也不信父母說的。
Thumbnail
2025/04/20
不是說父母影響不大,怎麼還要談這個? 不是不大,是父母如果本身的社會階級,會造成子女不想、不願意聽,也不信父母說的。
Thumbnail
看更多
你可能也想看
Thumbnail
TOMICA第一波推出吉伊卡哇聯名小車車的時候馬上就被搶購一空,一直很扼腕當時沒有趕緊入手。前陣子閒來無事逛蝦皮,突然發現幾家商場都又開始重新上架,價格也都回到正常水準,估計是官方又再補了一批貨,想都沒想就立刻下單! 同文也跟大家分享近期蝦皮購物紀錄、好用推薦、蝦皮分潤計畫的聯盟行銷!
Thumbnail
TOMICA第一波推出吉伊卡哇聯名小車車的時候馬上就被搶購一空,一直很扼腕當時沒有趕緊入手。前陣子閒來無事逛蝦皮,突然發現幾家商場都又開始重新上架,價格也都回到正常水準,估計是官方又再補了一批貨,想都沒想就立刻下單! 同文也跟大家分享近期蝦皮購物紀錄、好用推薦、蝦皮分潤計畫的聯盟行銷!
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
最後的統計機率,以及立體圖形,這大概是國中感到最輕鬆的章節。話是這麼說,因為學生到此通常都煮熟了,要死要活都定案,才感到沒差。筆者在這裡,只會針對一些常見的錯誤釐清,其他就不多說,國三這邊真的只是蜻蜓點水。圖形那邊則稍微提一下,立體概念照理說都有,還沒有的硬補也不行,不如回去先看小學高年級課程。
Thumbnail
最後的統計機率,以及立體圖形,這大概是國中感到最輕鬆的章節。話是這麼說,因為學生到此通常都煮熟了,要死要活都定案,才感到沒差。筆者在這裡,只會針對一些常見的錯誤釐清,其他就不多說,國三這邊真的只是蜻蜓點水。圖形那邊則稍微提一下,立體概念照理說都有,還沒有的硬補也不行,不如回去先看小學高年級課程。
Thumbnail
接著,筆者會教頂點怎麼求,也就是二次函數的整理,一開始「絕對不會直接用代數上課」,筆者一律用實際題目去講解,絕對不教y=ax^2+bx+c,理由相信大家都懂,對中上程度以下的人來說,多一個未知數都要花時間了,更何況全部都是代數。
Thumbnail
接著,筆者會教頂點怎麼求,也就是二次函數的整理,一開始「絕對不會直接用代數上課」,筆者一律用實際題目去講解,絕對不教y=ax^2+bx+c,理由相信大家都懂,對中上程度以下的人來說,多一個未知數都要花時間了,更何況全部都是代數。
Thumbnail
國三下數學,快解脫了同學們。下學期數學重點,嚴格說只有二次函數,後面是統計與機率、立體圖形,筆者應該會分兩部分,二次函數跟其他。因為二次函數的問題較多,統計與機率大致上還好,立體圖形也是,因為都接近會考,故以會考的角度來說,題目不會出太難,頂多一題,從投報率來說也不建議花太多功夫。 二次函數嚴格說
Thumbnail
國三下數學,快解脫了同學們。下學期數學重點,嚴格說只有二次函數,後面是統計與機率、立體圖形,筆者應該會分兩部分,二次函數跟其他。因為二次函數的問題較多,統計與機率大致上還好,立體圖形也是,因為都接近會考,故以會考的角度來說,題目不會出太難,頂多一題,從投報率來說也不建議花太多功夫。 二次函數嚴格說
Thumbnail
筆者只能說,沒有一致性的辦法,若以本篇著重在中段學生的狀況,過去的習慣,對成績最有效的辦法,是刷題目。但不是盲刷,是依照程度不同,自己要製作學習單,一次就針對一個小節,給個十題八題就好,讓中等程度的學生快速抓到這個題型的概念,跟大致切入的角度。
Thumbnail
筆者只能說,沒有一致性的辦法,若以本篇著重在中段學生的狀況,過去的習慣,對成績最有效的辦法,是刷題目。但不是盲刷,是依照程度不同,自己要製作學習單,一次就針對一個小節,給個十題八題就好,讓中等程度的學生快速抓到這個題型的概念,跟大致切入的角度。
Thumbnail
但就筆者個人經驗,數學在二下像自然一樣爆掉的狀況反倒少見,應該是二上已經被洗禮過,該炸的都炸了,剩下的是持續,以及慢慢習慣步調追上的差別。前半的第一部分是數列,目前只剩下等差數列,等比只有講一點概念,複雜運算都沒有了。筆者看過的學生在這邊出事的,大多是題型看太少,導致卡住抓不到解題辦法。
Thumbnail
但就筆者個人經驗,數學在二下像自然一樣爆掉的狀況反倒少見,應該是二上已經被洗禮過,該炸的都炸了,剩下的是持續,以及慢慢習慣步調追上的差別。前半的第一部分是數列,目前只剩下等差數列,等比只有講一點概念,複雜運算都沒有了。筆者看過的學生在這邊出事的,大多是題型看太少,導致卡住抓不到解題辦法。
Thumbnail
恭喜各位同學進入國中二年級,或者說要恭喜家長,小孩終於進入正規課程了。就跟高一會有銜接課程,大學也有一樣,國一課程基本上也算是有很強烈的銜接意味,但也有不少打底的意思。這也代表,各種綜合運用的技術會在國二的課程中出現。
Thumbnail
恭喜各位同學進入國中二年級,或者說要恭喜家長,小孩終於進入正規課程了。就跟高一會有銜接課程,大學也有一樣,國一課程基本上也算是有很強烈的銜接意味,但也有不少打底的意思。這也代表,各種綜合運用的技術會在國二的課程中出現。
Thumbnail
一下的另一個單元,拆成一元一次不等式,還有屬於對數字敏銳度的比例與統計。這要分開講一下,首先談不等式,這跟之前的方程式有不小差距,許多同學會一下子轉不過來,尤其是正負號的轉變上。
Thumbnail
一下的另一個單元,拆成一元一次不等式,還有屬於對數字敏銳度的比例與統計。這要分開講一下,首先談不等式,這跟之前的方程式有不小差距,許多同學會一下子轉不過來,尤其是正負號的轉變上。
Thumbnail
家長真的要記得,小學數學多半脫離不了算術的範疇,但進入數學就有數學語言的概念,無法運用數學語言,怎麼可能進入科學、工程的領域?就算勉強考進去,多半也只會是半調子。 能夠早點熟悉數學邏輯的思考,以及數學語言的運用,絕對是好事。
Thumbnail
家長真的要記得,小學數學多半脫離不了算術的範疇,但進入數學就有數學語言的概念,無法運用數學語言,怎麼可能進入科學、工程的領域?就算勉強考進去,多半也只會是半調子。 能夠早點熟悉數學邏輯的思考,以及數學語言的運用,絕對是好事。
Thumbnail
數學在五年級另外的項目,比較瑣碎又需要重視的,筆者認為有兩個:1.用符號代表數(就是未知數的概念) 2. 單位的的了解。未知數就是未來國中方程式的基礎,筆者親身經歷到的困境是,國一上來的新生,對於未知數沒有概念。你會覺得怎麼可能,小學不是教過了?
Thumbnail
數學在五年級另外的項目,比較瑣碎又需要重視的,筆者認為有兩個:1.用符號代表數(就是未知數的概念) 2. 單位的的了解。未知數就是未來國中方程式的基礎,筆者親身經歷到的困境是,國一上來的新生,對於未知數沒有概念。你會覺得怎麼可能,小學不是教過了?
Thumbnail
這是微積分科普系列:「從生活認識微積分」中的第一篇,在本文中將列舉數個生活例子,帶你逐一了解函數的概念,透過「長相」與「稱呼」,「商品」與「價格」、「原料」與「產品」帶你了解函數、定義域、值域的定義,並了解函數的數學標示方法,即使沒有學過函數概念的人也能讀懂。
Thumbnail
這是微積分科普系列:「從生活認識微積分」中的第一篇,在本文中將列舉數個生活例子,帶你逐一了解函數的概念,透過「長相」與「稱呼」,「商品」與「價格」、「原料」與「產品」帶你了解函數、定義域、值域的定義,並了解函數的數學標示方法,即使沒有學過函數概念的人也能讀懂。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News