[Python][自然語言]NLTK 實現電影評論情感分析

更新於 2024/06/29閱讀時間約 5 分鐘

情感分析是一種自然語言處理技術,用於自動識別和分析文本中情感傾向,通常是正向負向中性

我們可以使用 NLTK 來實現一個基於單純貝斯分類器的情感分析模型。

以下是一個簡單的情感分析示例:

步驟一:準備訓練和測試數據

首先,我們需要一些帶有情感標籤的文本數據集來訓練我們的分類器。

這裡我們使用 NLTK 內置的電影評論數據集 movie_reviews,它包含了正面和負面的電影評論。

import nltk
from nltk.corpus import movie_reviews

# 準備訓練資料集
documents = [(list(movie_reviews.words(fileid)), category)
for category in movie_reviews.categories()
for fileid in movie_reviews.fileids(category)]

# 打亂資料順序以增加模型的泛化能力
import random
random.shuffle(documents)

# 準備特徵集
all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words())
word_features = list(all_words.keys())[:2000] # 選取最常見的2000個單詞作為特徵

def document_features(document):
document_words = set(document)
features = {}
for word in word_features:
features['contains({})'.format(word)] = (word in document_words)
return features

featuresets = [(document_features(d), c) for (d,c) in documents]
train_set, test_set = featuresets[100:], featuresets[:100] # 分割訓練集和測試集

步驟二:訓練情感分析模型

接下來,我們使用單純貝氏分類器(Naive Bayes classifier)來訓練情感分析模型。

from nltk.classify import NaiveBayesClassifier

# 訓練分類器
classifier = NaiveBayesClassifier.train(train_set)

# 查看模型在測試集上的準確率
print('Accuracy:', nltk.classify.accuracy(classifier, test_set))

輸出

Accuracy: 0.78

步驟三:使用模型進行情感分析

最後,我們可以使用訓練好的模型來對新的文本進行情感分析。

def sentiment_analysis(text):
tokens = nltk.word_tokenize(text)
features = document_features(tokens)
return classifier.classify(features)

# 測試情感分析模型
review1 = "This movie is great and fantastic!"
review2 = "I disliked this film. It was boring."

print("Review 1:", sentiment_analysis(review1))
print("Review 2:", sentiment_analysis(review2))

輸出

Review 1: neg 
Review 2: neg

儲存模型

我們將使用 NLTK 提供的 pickle 模組來匯出訓練好的分類器模型。

import pickle

# 指定要保存模型的文件名
model_file = 'sentiment_classifier.pkl'

# 匯出模型
with open(model_file, 'wb') as f:
pickle.dump(classifier, f)

載入模型使用

import pickle

# 加載模型
with open(model_file, 'rb') as f:
loaded_classifier = pickle.load(f)

# 使用加載的模型進行情感分析
def sentiment_analysis(text):
tokens = nltk.word_tokenize(text)
features = document_features(tokens)
return loaded_classifier.classify(features)

# 測試加載的情感分析模型
review1 = "This movie is great and fantastic!"
review2 = "I disliked this film. It was boring."

print("Review 1:", sentiment_analysis(review1))
print("Review 2:", sentiment_analysis(review2))







avatar-img
128會員
209內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
螃蟹_crab的沙龍 的其他內容
本文介紹了流行的Python套件NLTK(Natural Language Toolkit)的主要特點、功能和在中文和英文語料上的應用。從安裝到實際應用,深入介紹了分詞、停用詞去除、詞性標註、命名實體識別等NLP任務的具體實現和步驟,幫助讀者理解和應用NLTK。
本文利用pyqt5,使用pyttsx3將QLineEdit(單行輸入框)的字串,轉成語音呈現出來。
本文主要使用SpeechRecognition來做一個簡單的語音辨識,使用pyqt5介面呈現。 按下Start Recording,開始錄音,並顯示請開始說話。然後按鈕名改名Stop 在按下Stop Recording,稍等片刻後就會呈現出辨識結果​ 程式範例 import sys i
微調(Fine tune)是深度學習中遷移學習的一種方法,其中預訓練模型的權重會在新數據上進行訓練。 本文主要介紹如何使用新的訓練圖檔在tesseract 辨識模型進行Fine tune 有關於安裝的部分可以參考友人的其他文章 Tesseract OCR - 繁體中文【安裝篇】 將所有資料
平時都在用tesseract來辨識OCR的部分,在網路上也常常聽說easyOCR比tesseract好用,就拿之前測試的OCR素材來比較看看囉。 以下輸入同樣圖片直接測試,並非絕對誰就比較準,只單純測試數字含英文的部分。 圖片素材就是15碼(英文加數字),檔名為OCR正確結果
本文將展示使用不同激活函數(ReLU 和 Sigmoid)的效果。 一個簡單的多層感知器(MLP)模型來對 Fashion-MNIST 資料集進行分類。 函數定義 Sigmoid 函數 Sigmoid 函數將輸入壓縮到 0到 1 之間: 特性: 輸出範圍是 (0,1)(0, 1)(0,1
本文介紹了流行的Python套件NLTK(Natural Language Toolkit)的主要特點、功能和在中文和英文語料上的應用。從安裝到實際應用,深入介紹了分詞、停用詞去除、詞性標註、命名實體識別等NLP任務的具體實現和步驟,幫助讀者理解和應用NLTK。
本文利用pyqt5,使用pyttsx3將QLineEdit(單行輸入框)的字串,轉成語音呈現出來。
本文主要使用SpeechRecognition來做一個簡單的語音辨識,使用pyqt5介面呈現。 按下Start Recording,開始錄音,並顯示請開始說話。然後按鈕名改名Stop 在按下Stop Recording,稍等片刻後就會呈現出辨識結果​ 程式範例 import sys i
微調(Fine tune)是深度學習中遷移學習的一種方法,其中預訓練模型的權重會在新數據上進行訓練。 本文主要介紹如何使用新的訓練圖檔在tesseract 辨識模型進行Fine tune 有關於安裝的部分可以參考友人的其他文章 Tesseract OCR - 繁體中文【安裝篇】 將所有資料
平時都在用tesseract來辨識OCR的部分,在網路上也常常聽說easyOCR比tesseract好用,就拿之前測試的OCR素材來比較看看囉。 以下輸入同樣圖片直接測試,並非絕對誰就比較準,只單純測試數字含英文的部分。 圖片素材就是15碼(英文加數字),檔名為OCR正確結果
本文將展示使用不同激活函數(ReLU 和 Sigmoid)的效果。 一個簡單的多層感知器(MLP)模型來對 Fashion-MNIST 資料集進行分類。 函數定義 Sigmoid 函數 Sigmoid 函數將輸入壓縮到 0到 1 之間: 特性: 輸出範圍是 (0,1)(0, 1)(0,1
你可能也想看
Google News 追蹤
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
今天來介紹python的函式 函式在python中是非常重要的一環,因為到了後期,程式會越來越複雜。 而函式可以想成是容易管理的小程式,當我們需要使用時,只需呼叫即可。
Thumbnail
古有四大名著,現今Python四大容器🤣 哪四個?list串列,tuple元組,dict字典,set集合。 那這四個怎麼分? 一起來看看吧! (以下有手寫與上機實際測試請付費觀看) 以上我精心整理主要會使用到的功能 當然python功能太多了,肯定不只。 實際操作: 大概就這樣?(
Thumbnail
先來名詞解釋jython跟JES: jython是一種實現了Python語言的Java平台版本的解釋器。它允許開發人員在Java虛擬機(JVM)上運行Python代碼,從而實現了Python語言與Java平台的無縫集成。 JES(Jython Environment for Students)是
Thumbnail
ETL是資料倉儲領域中一個重要的概念,全稱為Extract-Transform-Load,中文可譯為"抽取-轉換-載入"。ETL的作用是將來自不同來源的資料抽取出來,經過清理、轉換、整合等處理後,最終將處理好的資料載入到資料倉儲或其他單一的資料存放區
在求學階段,你已經對代數的計算熟到不能再熟,所以變數(variable)對你來說應該不至於太陌生,先來看看以下這個例子:   
Thumbnail
使用Python開發後端API的經驗中應該會常常看到WSGI與ASGI這兩個名詞, 兩者的差異究竟是什麼呢? 就讓我們來為您科普一番。 什麼是WSGI 全名為「Web Server Gateway Interface」 Web伺服器閘道介面,主要規範HTTP請求如何與伺服器溝通, 通
想要開始Python語言的開發環境,有兩種常見方式,一種是下載安裝到本機端,另一種是直接在雲端執行。本文將介紹三個常見的開發工具及其安裝步驟。
Thumbnail
本篇文章將教你如何使用Python和PyQt5來建立一個GUI應用程式。PyQt5是一個相當流行的Python模組,透過這個文章你將學習如何使用它來建立一個互動式的應用程式。
Thumbnail
當我們在撰寫一套系統的時候, 總是會提供一個介面讓使用者來觸發功能模組並回傳使用者所需的請求, 而傳統的安裝包模式總是太侷限, 需要個別主機獨立安裝, 相當繁瑣, 但隨著時代的演進與互聯網的崛起, 大部分的工作都可以藉由網頁端、裝置端來觸發, 而伺服端則是負責接收指令、運算與回傳結果, 雲端
Thumbnail
當我們在進行「語音辨識」的應用開發時, 首先會面臨一個問題, 那就是究竟要怎麼知道哪些段落是「人在說話的區段」, 精確的標示出這些區段之後, 我們除了可以儲存成純對話的段落, 還可以做出時間軸的字幕檔, 應用非常廣泛, 因此學會怎麼用VAD是進入語音領域非常重要的其中一個環節。 VAD代表
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
今天來介紹python的函式 函式在python中是非常重要的一環,因為到了後期,程式會越來越複雜。 而函式可以想成是容易管理的小程式,當我們需要使用時,只需呼叫即可。
Thumbnail
古有四大名著,現今Python四大容器🤣 哪四個?list串列,tuple元組,dict字典,set集合。 那這四個怎麼分? 一起來看看吧! (以下有手寫與上機實際測試請付費觀看) 以上我精心整理主要會使用到的功能 當然python功能太多了,肯定不只。 實際操作: 大概就這樣?(
Thumbnail
先來名詞解釋jython跟JES: jython是一種實現了Python語言的Java平台版本的解釋器。它允許開發人員在Java虛擬機(JVM)上運行Python代碼,從而實現了Python語言與Java平台的無縫集成。 JES(Jython Environment for Students)是
Thumbnail
ETL是資料倉儲領域中一個重要的概念,全稱為Extract-Transform-Load,中文可譯為"抽取-轉換-載入"。ETL的作用是將來自不同來源的資料抽取出來,經過清理、轉換、整合等處理後,最終將處理好的資料載入到資料倉儲或其他單一的資料存放區
在求學階段,你已經對代數的計算熟到不能再熟,所以變數(variable)對你來說應該不至於太陌生,先來看看以下這個例子:   
Thumbnail
使用Python開發後端API的經驗中應該會常常看到WSGI與ASGI這兩個名詞, 兩者的差異究竟是什麼呢? 就讓我們來為您科普一番。 什麼是WSGI 全名為「Web Server Gateway Interface」 Web伺服器閘道介面,主要規範HTTP請求如何與伺服器溝通, 通
想要開始Python語言的開發環境,有兩種常見方式,一種是下載安裝到本機端,另一種是直接在雲端執行。本文將介紹三個常見的開發工具及其安裝步驟。
Thumbnail
本篇文章將教你如何使用Python和PyQt5來建立一個GUI應用程式。PyQt5是一個相當流行的Python模組,透過這個文章你將學習如何使用它來建立一個互動式的應用程式。
Thumbnail
當我們在撰寫一套系統的時候, 總是會提供一個介面讓使用者來觸發功能模組並回傳使用者所需的請求, 而傳統的安裝包模式總是太侷限, 需要個別主機獨立安裝, 相當繁瑣, 但隨著時代的演進與互聯網的崛起, 大部分的工作都可以藉由網頁端、裝置端來觸發, 而伺服端則是負責接收指令、運算與回傳結果, 雲端
Thumbnail
當我們在進行「語音辨識」的應用開發時, 首先會面臨一個問題, 那就是究竟要怎麼知道哪些段落是「人在說話的區段」, 精確的標示出這些區段之後, 我們除了可以儲存成純對話的段落, 還可以做出時間軸的字幕檔, 應用非常廣泛, 因此學會怎麼用VAD是進入語音領域非常重要的其中一個環節。 VAD代表