AI說書 - 從0開始 - 102

更新於 發佈於 閱讀時間約 2 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


原始 Transformer 架構的 Transduction Process 使用編碼器堆疊、解碼器堆疊,而用所有模型參數來表示參考序列,我們將該輸出序列稱為參考。


為什麼不直接說「輸出預測」呢?問題在於沒有單一的輸出預測,Transformer 和人類一樣,會產生我們可以參考的結果,但如果我們以不同的方式訓練它或使用不同的 Transformer 模型,結果可能會改變。


我們立即意識到 Human Transduction 的人類標準,即語言序列的表示,是一個相當大的挑戰,然而,目前已經取得了很大進展。


機器翻譯的評估證明 NLP 已經進步了,為了確定一種解決方案優於另一種解決方案,每個 NLP 挑戰者、實驗室或組織必須參考相同的資料集才能使比較有效。


Vaswani 等人於 2017 介紹了原始 Transformer 模型在 Workshop on Statistical Machine (WMT) 2014 英德翻譯任務和 WMT 2014 英法翻譯任務中所取得的成果,原始 Transformer 取得了最先進的 Bilingual Evaluation Understudy (BLEU) 分數。


我們必須先預處理我們將要檢查的 WMT 資料集,2014 年 WMT 包含多個歐洲語言資料集,它是一個資料集包含來自 Europarl 語料庫第 7 版的資料,我們將使用 1996 - 2011 來自歐洲議會會議記錄平行語料庫的法語-英語資料集,詳見 : https://www.statmt.org/europarl/v7/fr-en.tgz


avatar-img
177會員
471內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - Prompt Engineering - 55 中說:Universal Simul
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Vaswani 等人 2017 年解決了設計 Transformer 時最困難的 NLP 問題之一,對於我們人機智慧設計師來說,機器翻譯的人類基準似乎遙不可及,然而,這
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 結構 Universal Simulation Pattern (USP) 分為三個主要組成部分:Ro
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在第四章中,將會談論以下主題: 定義機器翻譯 人類轉導與翻譯 機器轉導和翻譯 評估機器翻譯 預處理 Workshop on Machine Translati
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 其他名稱 Unuversal Simulation Pattern (USP) 亦稱為 Persona
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 擁有先進的翻譯能力,能夠捕捉多種語言中單字序列的意思,在第四章中,我們將介紹一些關鍵的翻譯概念,並探討它們在 Google Trax、Googl
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - Prompt Engineering - 55 中說:Universal Simul
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Vaswani 等人 2017 年解決了設計 Transformer 時最困難的 NLP 問題之一,對於我們人機智慧設計師來說,機器翻譯的人類基準似乎遙不可及,然而,這
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 結構 Universal Simulation Pattern (USP) 分為三個主要組成部分:Ro
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在第四章中,將會談論以下主題: 定義機器翻譯 人類轉導與翻譯 機器轉導和翻譯 評估機器翻譯 預處理 Workshop on Machine Translati
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 其他名稱 Unuversal Simulation Pattern (USP) 亦稱為 Persona
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 擁有先進的翻譯能力,能夠捕捉多種語言中單字序列的意思,在第四章中,我們將介紹一些關鍵的翻譯概念,並探討它們在 Google Trax、Googl
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
本系列將討論 LLM 時代中,分散 ML workload 的各種方法。作為系列的第一篇,我們將提及 High-level 的概論,譬如分散式訓練的各種切法、Model Parallelism 的相依問題,以及改善 Network Topology 等課題。
Thumbnail
前言 讀了許多理論,是時候實際動手做做看了,以下是我的模型訓練初體驗,有點糟就是了XD。 正文 def conv(filters, kernel_size, strides=1): return Conv2D(filters, kernel_size,
前言 在閱讀《強化式學習:打造最強 AlphaZero 通用演算法》時,對一些看似基本,但是重要且會影響到之後實作的項目概念有點疑惑,覺得應該查清楚,所以搞懂後記錄下來,寫下這篇文章(應該說是筆記?)。 正文 下面這段程式碼: model = Sequential() model.add
https://www.youtube.com/watch?v=wjZofJX0v4M 這是我看過最好的AI科普影片了;現在流行的GPT使用的大語言模型 (large language model, LLM), 是把每一個單字都當作一個高維度向量 影片中GPT3共儲存50257個英文單字, 每
Thumbnail
預計量子AI計算會在2032年左右來到,在這之前,我們還有充足的時間可以逐步去學習量子計算與演算法,讓我們按部就班,持續前進,做輕鬆無負擔的超前學習 !
Thumbnail
上篇我們簡單的了解了 TTS 想要達到的目標,但是對於訓練資料的處理、網路架構、損失函數、輸出分析等考慮到篇幅尚未解釋清楚,這篇將針對訓練資料處理中的文字部分進行詳細說明,讓我們開始吧。
Thumbnail
AI 相關的內容每天都非常多,有聽過很多人因此感覺到焦慮,怕錯過了最新資訊就會趕不上,這篇內容會跟大家詳細的分享我自己的學習方法和經驗,並且會在最後分享一些我的學習資訊來源。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
先學會為自己綻放,再給懂你的人欣賞。
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
本系列將討論 LLM 時代中,分散 ML workload 的各種方法。作為系列的第一篇,我們將提及 High-level 的概論,譬如分散式訓練的各種切法、Model Parallelism 的相依問題,以及改善 Network Topology 等課題。
Thumbnail
前言 讀了許多理論,是時候實際動手做做看了,以下是我的模型訓練初體驗,有點糟就是了XD。 正文 def conv(filters, kernel_size, strides=1): return Conv2D(filters, kernel_size,
前言 在閱讀《強化式學習:打造最強 AlphaZero 通用演算法》時,對一些看似基本,但是重要且會影響到之後實作的項目概念有點疑惑,覺得應該查清楚,所以搞懂後記錄下來,寫下這篇文章(應該說是筆記?)。 正文 下面這段程式碼: model = Sequential() model.add
https://www.youtube.com/watch?v=wjZofJX0v4M 這是我看過最好的AI科普影片了;現在流行的GPT使用的大語言模型 (large language model, LLM), 是把每一個單字都當作一個高維度向量 影片中GPT3共儲存50257個英文單字, 每
Thumbnail
預計量子AI計算會在2032年左右來到,在這之前,我們還有充足的時間可以逐步去學習量子計算與演算法,讓我們按部就班,持續前進,做輕鬆無負擔的超前學習 !
Thumbnail
上篇我們簡單的了解了 TTS 想要達到的目標,但是對於訓練資料的處理、網路架構、損失函數、輸出分析等考慮到篇幅尚未解釋清楚,這篇將針對訓練資料處理中的文字部分進行詳細說明,讓我們開始吧。
Thumbnail
AI 相關的內容每天都非常多,有聽過很多人因此感覺到焦慮,怕錯過了最新資訊就會趕不上,這篇內容會跟大家詳細的分享我自己的學習方法和經驗,並且會在最後分享一些我的學習資訊來源。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
先學會為自己綻放,再給懂你的人欣賞。