AI說書 - 從0開始 - 403 | Pathways 特色

更新 發佈閱讀 2 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


PaLM 和 PaLM2 是基於 Pathways 技術構建的,Pathways 是 Google 的一項技術,通過數據並行、模型並行和執行級別並行來提高訓練大型語言模型的效率。Pathways 論文的標題可能看起來有些深奧,Barham 等人於 2022 年發表的《Pathways: Asynchronous Distributed Dataflow》確實看起來像是一篇你可能不會想深入了解的論文,然而,一旦你開始閱讀,你就會被吸引住:

  • Heterogeneous Execution:Pathways 可以在多種設備上運行程序,包括 TPU、CPU 和 GPU,這在整合所有可用的計算能力時是一項重大進步
  • Asynchronous Execution:Pathways 允許程序以異步方式運行。這可能看起來不怎麼吸引人,但 PaLM 將基於這項技術,以令人驚訝的方式異步運行以前的順序子層
  • Dataflow Programming:Pathways 包含數據流編程,用來編寫能夠擴展到大型數據集的程序
  • 可擴展性:在需要時可以添加新功能
留言
avatar-img
留言分享你的想法!
avatar-img
Learn AI 不 BI
246會員
1.0K內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
你可能也想看
Thumbnail
厭倦了管理眾多信用卡以追求最高回饋?玉山Unicard權益切換信用卡應運而生,讓您輕鬆切換消費方案,從1%無上限基本回饋,透過三種方案任意切換,最高可享4.5%回饋,更有限時核卡加碼至7.5%。本文深入解析各方案優勢、設定方式,並提供日常與旅行配置建議,讓您成為聰明消費的「回饋金獵人」。
Thumbnail
厭倦了管理眾多信用卡以追求最高回饋?玉山Unicard權益切換信用卡應運而生,讓您輕鬆切換消費方案,從1%無上限基本回饋,透過三種方案任意切換,最高可享4.5%回饋,更有限時核卡加碼至7.5%。本文深入解析各方案優勢、設定方式,並提供日常與旅行配置建議,讓您成為聰明消費的「回饋金獵人」。
Thumbnail
話說身為短線交易者,每天要作的事情就是從盤勢觀察、到籌碼流向,再到經過多維度資料數據交叉比對,盤中盯著分K、江波圖和五檔報價,算計著每一分K線的轉折,雖能換來即時驗證判斷的快感與成就,但長期下來,卻也衍生眼睛與肩頸卻成了抹不去的職業病。
Thumbnail
話說身為短線交易者,每天要作的事情就是從盤勢觀察、到籌碼流向,再到經過多維度資料數據交叉比對,盤中盯著分K、江波圖和五檔報價,算計著每一分K線的轉折,雖能換來即時驗證判斷的快感與成就,但長期下來,卻也衍生眼睛與肩頸卻成了抹不去的職業病。
Thumbnail
快要年末了,對於即將要出國的我,即時來了這張信用卡真的很不錯。認識我的人都知道我因為工作常常要出國,所以這次感謝玉山銀行合作邀請,讓我可以體驗這張卡的美好。
Thumbnail
快要年末了,對於即將要出國的我,即時來了這張信用卡真的很不錯。認識我的人都知道我因為工作常常要出國,所以這次感謝玉山銀行合作邀請,讓我可以體驗這張卡的美好。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Google 翻譯 (https://translate.google.com/) 提供了一個隨時可用的官方翻譯介面,Google 在其翻譯演算法中也擁有 Transf
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Google 翻譯 (https://translate.google.com/) 提供了一個隨時可用的官方翻譯介面,Google 在其翻譯演算法中也擁有 Transf
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 新模型和 Human Baselines 排名將不斷變化,Human Baselines 的位置自從基礎模型出現以來,它就不再具有多大意義了,這些排名只是表明經典 NL
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 新模型和 Human Baselines 排名將不斷變化,Human Baselines 的位置自從基礎模型出現以來,它就不再具有多大意義了,這些排名只是表明經典 NL
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續xxxx,ChatGPT 產生的程式,我們將它匯入 Colab 執行看看 ( Colab 使用教學見 使用Meta釋出的模型,實作Chat GPT - Part 0
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續xxxx,ChatGPT 產生的程式,我們將它匯入 Colab 執行看看 ( Colab 使用教學見 使用Meta釋出的模型,實作Chat GPT - Part 0
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 45,我們介紹了 Google 於2017 年提出的 Transformer 架構的 Positional Encoding (PE)
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 45,我們介紹了 Google 於2017 年提出的 Transformer 架構的 Positional Encoding (PE)
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 25示範了ChatGPT程式的能力,同時在AI說書 - 從0開始 - 26靠ChatGPT產生Decision Tree程式,現在我們來
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 25示範了ChatGPT程式的能力,同時在AI說書 - 從0開始 - 26靠ChatGPT產生Decision Tree程式,現在我們來
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 25示範了ChatGPT程式的能力,現在我們繼續做下去。 AI說書 - 從0開始 - 25在步驟7:Plot the confusio
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 25示範了ChatGPT程式的能力,現在我們繼續做下去。 AI說書 - 從0開始 - 25在步驟7:Plot the confusio
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 22解釋Foundation Model與Engines意涵後,我們來試用看看ChatGPT。 嘗試問以下問題:Provide a
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 22解釋Foundation Model與Engines意涵後,我們來試用看看ChatGPT。 嘗試問以下問題:Provide a
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 18中,介紹了OpenAI的GPT模型如何利用Inference的Pipeline產生Token。 完整Pipeline可能
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 18中,介紹了OpenAI的GPT模型如何利用Inference的Pipeline產生Token。 完整Pipeline可能
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News