上古漢語的邏輯結構 166

更新 發佈閱讀 2 分鐘

3.0 歧義的處理 — 函算語法的一個應用

raw-image

由於上古漢語極其簡單的結構和使用者態度粗疏以至對標點符號不重視,後人要準確詮釋古籍的內容便成為一大障礙。

2.0 章的的眾多例子告訴我們,借用函算語法 (functorial grammar) 的語構型概念,或許有機會解決這個問題。

其實函算語法的中心概念很簡單,只要我們接受所指派的語構型,我們基本上是被逼接受據此而來的詮釋。這體現出的正是邏輯本質上的一個特徵。

讓我們拿《道德經》的首段來小試牛刀,看可否提供一個初步可靠有效的推斷或解讀標準。

事實上,《道德經》充滿大量的歧義句,而後來以斷句和注解為業的「學者」又按個人喜好把很多句子解得似是而非,天花亂墜﹔可惜在缺乏一個可靠有效的推斷或解讀標準之下,到了今日還是落得一個不是人云亦云就是自由發揮的境況。

當然,還有很多古籍,同樣充滿大量不必要的歧義句,否則斷句也不會成為一門學問了﹗

__________

待續




留言
avatar-img
留言分享你的想法!
avatar-img
sen的沙龍
10會員
441內容數
我們這裡談兩個東西: 哲學和邏輯,以及與哲學和邏輯相關的東西。 首先開設的房間是《綁架愛麗絲 之 地下邏輯》。 隨後將陸續開設《綁架愛麗絲 之 鏡像語言》和《上古漢語的邏輯結構》。 聯絡作者﹕sen.wong@protonmail.com
sen的沙龍的其他內容
2025/01/31
6.0 結語﹕哲學就是語言哲學 五 十九世紀末及至廿世紀初中葉的語言哲學家 —— 不論是屬於邏輯學派或自然語言分析學派的 —— 都告訴我們很多的哲學問題實在都是語言問題。 自此之後,整個世界的哲學走向大概都以英語系的語言分析哲學為主導﹔在這之前,德語哲學主導了西方哲學﹔再往前推是法語﹔再之前,
Thumbnail
2025/01/31
6.0 結語﹕哲學就是語言哲學 五 十九世紀末及至廿世紀初中葉的語言哲學家 —— 不論是屬於邏輯學派或自然語言分析學派的 —— 都告訴我們很多的哲學問題實在都是語言問題。 自此之後,整個世界的哲學走向大概都以英語系的語言分析哲學為主導﹔在這之前,德語哲學主導了西方哲學﹔再往前推是法語﹔再之前,
Thumbnail
2025/01/30
6.0 結語﹕哲學就是語言哲學 三 試看下面的一個日用德語句﹕ [Carnap 1931] 英語可譯作「There is nothing outside」,漢語可譯作「外面什麼也沒有」。與 6.0_2 比較一下即突出了一個差別﹕6.0_3 是一個合乎德語語構的句子,而「nicht」的用法是正當
Thumbnail
2025/01/30
6.0 結語﹕哲學就是語言哲學 三 試看下面的一個日用德語句﹕ [Carnap 1931] 英語可譯作「There is nothing outside」,漢語可譯作「外面什麼也沒有」。與 6.0_2 比較一下即突出了一個差別﹕6.0_3 是一個合乎德語語構的句子,而「nicht」的用法是正當
Thumbnail
2025/01/29
6.0 結語﹕哲學就是語言哲學 三 縱觀整個包括近代、現代、當代的西方哲學史也就是用屈折語提出的哲學思路。 雖然我們不能說所有的哲學和邏輯問題都是語言問題,但我們有理由相信所有的哲學和邏輯問題都必須使用語言來構思和構建﹕換句話說,用任一語言提出的問題必然是該語言的產物﹔用任一語言提出的問題必然
Thumbnail
2025/01/29
6.0 結語﹕哲學就是語言哲學 三 縱觀整個包括近代、現代、當代的西方哲學史也就是用屈折語提出的哲學思路。 雖然我們不能說所有的哲學和邏輯問題都是語言問題,但我們有理由相信所有的哲學和邏輯問題都必須使用語言來構思和構建﹕換句話說,用任一語言提出的問題必然是該語言的產物﹔用任一語言提出的問題必然
Thumbnail
看更多
你可能也想看
Thumbnail
4.0 尚芬哥爾操作與升型處理 4.1 尚芬哥爾操作 4.2 升型處理 一 為了解決一些推導上的問題,我們在 2.0 章中使用了升型處理,並且略為解釋了升型處理的依據。 我們也說過這是語言學學者的功勞。 但事實上,原來的概念必須追溯至德國數學家和邏輯學家弗雷格對函數的分析,比嘗試借用數學
Thumbnail
4.0 尚芬哥爾操作與升型處理 4.1 尚芬哥爾操作 4.2 升型處理 一 為了解決一些推導上的問題,我們在 2.0 章中使用了升型處理,並且略為解釋了升型處理的依據。 我們也說過這是語言學學者的功勞。 但事實上,原來的概念必須追溯至德國數學家和邏輯學家弗雷格對函數的分析,比嘗試借用數學
Thumbnail
4.0 尚芬哥爾操作與升型處理 4.1 尚芬哥爾操作 三 現在我們提出一個主張,上古漢語的語構不單具有一個頗為清晰的論元\函子 (原語序) 結構,這個結構更結合了尚芬哥爾操作,而且必須通過尚芬哥爾操作才能進一步理解上古漢語的邏輯結構。上古漢語裡即使是最簡單的句式亦隱含這種「處理」。自然語言
Thumbnail
4.0 尚芬哥爾操作與升型處理 4.1 尚芬哥爾操作 三 現在我們提出一個主張,上古漢語的語構不單具有一個頗為清晰的論元\函子 (原語序) 結構,這個結構更結合了尚芬哥爾操作,而且必須通過尚芬哥爾操作才能進一步理解上古漢語的邏輯結構。上古漢語裡即使是最簡單的句式亦隱含這種「處理」。自然語言
Thumbnail
4.0 尚芬哥爾操作與升型處理 4.1 尚芬哥爾操作 二 4.1_1 是一個函數。在缺乏規約的情況下, 是有歧義的,因為在實際操作上,我們不知道應該如何使用函子 F。 使用括號是一個常用的手段,例如 這明顯是一個二元函數,換句話說,這個函數的返回值同時需要兩個輸入值。假設 F 是求和函數
Thumbnail
4.0 尚芬哥爾操作與升型處理 4.1 尚芬哥爾操作 二 4.1_1 是一個函數。在缺乏規約的情況下, 是有歧義的,因為在實際操作上,我們不知道應該如何使用函子 F。 使用括號是一個常用的手段,例如 這明顯是一個二元函數,換句話說,這個函數的返回值同時需要兩個輸入值。假設 F 是求和函數
Thumbnail
4.0 尚芬哥爾操作與升型處理 4.1 尚芬哥爾操作 一 我們對上古漢語的解析系統 (parsing system) 使用了升型處理,故有需要在這裡略為陳述這個邏輯概念及操作的背境。 在邏輯模仿數學的公理化過程中,對基元 (primitives) 的化約一直以來都受到邏輯學者的關注。從布
Thumbnail
4.0 尚芬哥爾操作與升型處理 4.1 尚芬哥爾操作 一 我們對上古漢語的解析系統 (parsing system) 使用了升型處理,故有需要在這裡略為陳述這個邏輯概念及操作的背境。 在邏輯模仿數學的公理化過程中,對基元 (primitives) 的化約一直以來都受到邏輯學者的關注。從布
Thumbnail
3.0 歧義的處理 — 函算語法的一個應用 三 另一方面,如按 3.0_8 的解讀,推導和理解兩者均順理成章﹕ 我們認為「名」字用作動詞,統領「天地之始」和「無」兩個成份,用法上類似「非」字及「知」字的用法而無需在我們的語法系統中遷移位置。3.0_8.1 - 3.0_8.7 的解析和推導證明了
Thumbnail
3.0 歧義的處理 — 函算語法的一個應用 三 另一方面,如按 3.0_8 的解讀,推導和理解兩者均順理成章﹕ 我們認為「名」字用作動詞,統領「天地之始」和「無」兩個成份,用法上類似「非」字及「知」字的用法而無需在我們的語法系統中遷移位置。3.0_8.1 - 3.0_8.7 的解析和推導證明了
Thumbnail
3.0 歧義的處理 — 函算語法的一個應用 一 由於上古漢語極其簡單的結構和使用者態度粗疏以至對標點符號不重視,後人要準確詮釋古籍的內容便成為一大障礙。 但 2.0 章的的眾多例子告訴我們,借用函算語法 (functorial grammar) 的語構型概念,或許有機會解決這個問題。 其實函
Thumbnail
3.0 歧義的處理 — 函算語法的一個應用 一 由於上古漢語極其簡單的結構和使用者態度粗疏以至對標點符號不重視,後人要準確詮釋古籍的內容便成為一大障礙。 但 2.0 章的的眾多例子告訴我們,借用函算語法 (functorial grammar) 的語構型概念,或許有機會解決這個問題。 其實函
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 四 在以語構範疇為單位的語言結構上,同樣可以應用前述的函數概念或規則。其中一個最大的分別是,若以 1.4.2_4 為用作對比的例子,函算語法的論域 (domain of dis
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 四 在以語構範疇為單位的語言結構上,同樣可以應用前述的函數概念或規則。其中一個最大的分別是,若以 1.4.2_4 為用作對比的例子,函算語法的論域 (domain of dis
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 二 關於函數的演變和弗雷格對函數的看法,前面的 1.2 節和 1.3 節已經談論了不少。 由於函數在數學﹑邏輯學﹑計算語言學極為重要,更且是本書闡述的語法的中心概念,因此有必要再略作
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 二 關於函數的演變和弗雷格對函數的看法,前面的 1.2 節和 1.3 節已經談論了不少。 由於函數在數學﹑邏輯學﹑計算語言學極為重要,更且是本書闡述的語法的中心概念,因此有必要再略作
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News