上古漢語的邏輯結構 170

更新於 2024/12/13閱讀時間約 3 分鐘

4.0 尚芬哥爾操作與升型處理

raw-image

4.1 尚芬哥爾操作

4.1_1 是一個函數。在缺乏規約的情況下,

raw-image

是有歧義的,因為在實際操作上,我們不知道應該如何使用函子 F

使用括號是一個常用的手段,例如

raw-image

這明顯是一個二元函數,換句話說,這個函數的返回值同時需要兩個輸入值。假設 是求和函數,我們必須同時用譬如「4」來替換「x」,及用譬如「2」來替換「y」,從而有﹕

raw-image

弗雷格的眾多創見之一是在《概念文字》中明確指出我們沒有必要視「4+2 = 6」這樣的一個句子為滿足了下述函數

raw-image

而得出的一個結果。就邏輯而言,「4+2 = 6」也可以是滿足了這個函數

raw-image

而得出的一個結果,即 (4+...) 是另一個概念。

尚芬哥爾的突破性是將弗雷格的創見付諸行動並設計出一個函數化約方案。以二元函數為例,按弗雷格的建議,我們可以合法地將一個二元函數 F(x,y) 寫作

raw-image

fx 是個一元函數,其論元為 yf 自己也是個一元函數,其論元為 x

如果 Gfx 的返回值 (也是一個函數),我們便有

raw-image

若用計算機編程的語言來表達,可註「x」下標,以表示 函數的參數﹕

raw-image

顯然,任一具有如下形式結構

raw-image

的多元函數也可以改寫作

raw-image

如果我們有以下的約定﹕

raw-image

就計算而言,我們有一個簡潔而毫不含糊的嚴格程序﹕先滿足 x1,再滿足 x2,一直至 z,如果原來的多元函數為 F(x1,x2, ... , z)。在計算機出現之前,這個化約函數的手段看似一個花招﹔但在計算機出現之後,一直到函數式編程在二十世紀六十年代逐漸冒出頭來 (1960 的 LISP﹑1963 的 Algol 60﹑1966 的 ISWIM﹑1968 的 PAL﹑1973-83 的 SASL﹑1970 的 ML﹑1986 的 Miranda﹑1992 至今的 Haskell) [Turner 2012] ,人們才明白上文關於把多元函數化約為單元函數的技法可用作計算機演算的一種核心技術。函數式編程語言都以 λ 記法為核心技術,而 λ 演算的核心技術就是尚芬哥爾操作 (schönfinkeling schönfinkelization) 或柯里化 (currying) —— 即把多元函數化約為單元函數的技法

__________

待續



內容總結
上古漢語的邏輯結構
5
/5
avatar-img
6會員
313內容數
我們這裡談兩個東西: 哲學和邏輯,以及與哲學和邏輯相關的東西。 首先開設的房間是《綁架愛麗絲 之 地下邏輯》。 隨後將陸續開設《綁架愛麗絲 之 鏡像語言》和《上古漢語的邏輯結構》。 聯絡作者﹕sen.wong@protonmail.com
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
sen的沙龍 的其他內容
4.0 尚芬哥爾操作與升型處理 4.1 尚芬哥爾操作 一 我們對上古漢語的解析系統 (parsing system) 使用了升型處理,故有需要在這裡略為陳述這個邏輯概念及操作的背境。 在邏輯模仿數學的公理化過程中,對基元 (primitives) 的化約一直以來都受到邏輯學者的關注。從布
5/5上古漢語的邏輯結構
3.0 歧義的處理 — 函算語法的一個應用 三 另一方面,如按 3.0_8 的解讀,推導和理解兩者均順理成章﹕ 我們認為「名」字用作動詞,統領「天地之始」和「無」兩個成份,用法上類似「非」字及「知」字的用法而無需在我們的語法系統中遷移位置。3.0_8.1 - 3.0_8.7 的解析和推導證明了
5/5上古漢語
3.0 歧義的處理 — 函算語法的一個應用 二 《道德經》的首句為「道可道非常道。名可名非常名。無名天地之始;有名萬物之母。故常無欲以觀其妙;常有欲以觀其徼。此兩者同出而異名,同謂之玄。玄之又玄,眾妙之門」﹔箇中的歧義句包括「無名天地之始」﹑「有名萬物之母」﹑「故常無欲以觀其妙」和「常有欲以
5/5上古漢語
3.0 歧義的處理 — 函算語法的一個應用 一 由於上古漢語極其簡單的結構和使用者態度粗疏以至對標點符號不重視,後人要準確詮釋古籍的內容便成為一大障礙。 但 2.0 章的的眾多例子告訴我們,借用函算語法 (functorial grammar) 的語構型概念,或許有機會解決這個問題。 其實函
5/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 十三 上古漢語中一個字或詞的語構位置決定了該字或詞的語構型。傳統語法中並置的名詞是最佳例證。假設有一合式
5/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 十二 本章的起點是北宋錢塘僧人文瑩所報導或虛構的一段對話﹕趙匡胤對趙普說,「之乎者也,助得甚事?」缺乏語
5/5上古漢語
4.0 尚芬哥爾操作與升型處理 4.1 尚芬哥爾操作 一 我們對上古漢語的解析系統 (parsing system) 使用了升型處理,故有需要在這裡略為陳述這個邏輯概念及操作的背境。 在邏輯模仿數學的公理化過程中,對基元 (primitives) 的化約一直以來都受到邏輯學者的關注。從布
5/5上古漢語的邏輯結構
3.0 歧義的處理 — 函算語法的一個應用 三 另一方面,如按 3.0_8 的解讀,推導和理解兩者均順理成章﹕ 我們認為「名」字用作動詞,統領「天地之始」和「無」兩個成份,用法上類似「非」字及「知」字的用法而無需在我們的語法系統中遷移位置。3.0_8.1 - 3.0_8.7 的解析和推導證明了
5/5上古漢語
3.0 歧義的處理 — 函算語法的一個應用 二 《道德經》的首句為「道可道非常道。名可名非常名。無名天地之始;有名萬物之母。故常無欲以觀其妙;常有欲以觀其徼。此兩者同出而異名,同謂之玄。玄之又玄,眾妙之門」﹔箇中的歧義句包括「無名天地之始」﹑「有名萬物之母」﹑「故常無欲以觀其妙」和「常有欲以
5/5上古漢語
3.0 歧義的處理 — 函算語法的一個應用 一 由於上古漢語極其簡單的結構和使用者態度粗疏以至對標點符號不重視,後人要準確詮釋古籍的內容便成為一大障礙。 但 2.0 章的的眾多例子告訴我們,借用函算語法 (functorial grammar) 的語構型概念,或許有機會解決這個問題。 其實函
5/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 十三 上古漢語中一個字或詞的語構位置決定了該字或詞的語構型。傳統語法中並置的名詞是最佳例證。假設有一合式
5/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 十二 本章的起點是北宋錢塘僧人文瑩所報導或虛構的一段對話﹕趙匡胤對趙普說,「之乎者也,助得甚事?」缺乏語
5/5上古漢語
你可能也想看
Google News 追蹤
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
2.0 上古漢語的特殊結構 2.3 之乎者也 —  也 (矣﹑焉) 2.3.1 也 一﹕初探之四 現在讓我們從函數引申出來的函子/論元觀點來解析上述「也」字的用法。用初級計算機科學編程的語言來說,函子就是一個具有函數功能的物件 (object),方便我們使用﹔它的功能就是讓我們可以召喚
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 四 在以語構範疇為單位的語言結構上,同樣可以應用前述的函數概念或規則。其中一個最大的分別是,若以 1.4.2_4 為用作對比的例子,函算語法的論域 (domain of dis
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 三 弗雷格從語言結構的觀點出發,提出了函數可以被視為一個不完整的表式。如果我們將一個函數拆解為一個由一個函子及其 (一個或多個) 論元所組成的表式,那麼該函子便是一個有待滿足的
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 二 關於函數的演變和弗雷格對函數的看法,前面的 1.2 節和 1.3 節已經談論了不少。 由於函數在數學﹑邏輯學﹑計算語言學極為重要,更且是本書闡述的語法的中心概念,因此有必要再略作
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 九 為能清晰說明,我們給範疇次序標號 (即置頂的 1-5),使整個推導過程看似一個矩陣﹕ 1.4.1_5.3 艾杜凱維茨的推導矩陣 第 2 行的 gr:1 (C1, C2) 是說 gr 用於第 1 行的 C
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 七 指派範疇是第一步, 第二步是設定推導規則。 推導規則的作用是對某一給定的表式63 進行判定,看它是否一個貫通的表式(或詞構)。就上述英語例句而言,我們只需一個簡單的單向通則 (general rule)﹕6
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 三 上文的這個思想的淵源來自古希臘文語法和歐洲中古時期經院派邏輯對範疇詞 (κατηγόρημα;英譯: categorematic terms) 與非範疇詞 (συνκατηγορημα; 英譯: synca
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 五 弗雷格要我們注意一個現象,假如我們稱「x」為一個「論元」(argument), 1.3_7 2.13+2 ﹑ 1.3_8 2.23+2 ﹑ 1.3_9 2.33
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
2.0 上古漢語的特殊結構 2.3 之乎者也 —  也 (矣﹑焉) 2.3.1 也 一﹕初探之四 現在讓我們從函數引申出來的函子/論元觀點來解析上述「也」字的用法。用初級計算機科學編程的語言來說,函子就是一個具有函數功能的物件 (object),方便我們使用﹔它的功能就是讓我們可以召喚
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 四 在以語構範疇為單位的語言結構上,同樣可以應用前述的函數概念或規則。其中一個最大的分別是,若以 1.4.2_4 為用作對比的例子,函算語法的論域 (domain of dis
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 三 弗雷格從語言結構的觀點出發,提出了函數可以被視為一個不完整的表式。如果我們將一個函數拆解為一個由一個函子及其 (一個或多個) 論元所組成的表式,那麼該函子便是一個有待滿足的
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 二 關於函數的演變和弗雷格對函數的看法,前面的 1.2 節和 1.3 節已經談論了不少。 由於函數在數學﹑邏輯學﹑計算語言學極為重要,更且是本書闡述的語法的中心概念,因此有必要再略作
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 九 為能清晰說明,我們給範疇次序標號 (即置頂的 1-5),使整個推導過程看似一個矩陣﹕ 1.4.1_5.3 艾杜凱維茨的推導矩陣 第 2 行的 gr:1 (C1, C2) 是說 gr 用於第 1 行的 C
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 七 指派範疇是第一步, 第二步是設定推導規則。 推導規則的作用是對某一給定的表式63 進行判定,看它是否一個貫通的表式(或詞構)。就上述英語例句而言,我們只需一個簡單的單向通則 (general rule)﹕6
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 三 上文的這個思想的淵源來自古希臘文語法和歐洲中古時期經院派邏輯對範疇詞 (κατηγόρημα;英譯: categorematic terms) 與非範疇詞 (συνκατηγορημα; 英譯: synca
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 五 弗雷格要我們注意一個現象,假如我們稱「x」為一個「論元」(argument), 1.3_7 2.13+2 ﹑ 1.3_8 2.23+2 ﹑ 1.3_9 2.33
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的