iPSC神經元於疾病建模和藥物篩選之應用

更新於 發佈於 閱讀時間約 3 分鐘
探討如何利用人類誘導性多能幹細胞 (iPSC) 衍生的神經元進行轉譯疾病建模,並著重於開發適用於治療藥物發現的篩選平台。iPSC 技術被視為增進我們對疾病生物學理解、促進藥物開發的一大途徑。隨著 iPSC 培養、基因工程和分化協議的進步,iPSC 衍生的疾病模型已從幹細胞生物學的專業領域,快速擴展到細胞神經科學的主流工具。本文旨在為使用 iPSC 衍生的神經元進行疾病建模提供指導,特別是針對能夠用於治療藥物發現的篩選平台。此外也強調了整合三維系統的潛力,這可能會創造出更具轉譯性的體外模型。
raw-image

本文著重於提升體外實驗結果的轉譯性,使其更貼近體內真實情況,進而改善臨床預測。文中回顧了大量使用 iPSC 衍生神經細胞的文獻,評估了超過 25 種小分子化合物的篩選報告。評估標準包括細胞特性、控制組的設置、反篩選以及結果的可重複性。此外,還根據 Vincent 提出的「表型篩選規則」,評估了細胞類型、刺激和終點與所建模疾病的相關性。研究發現,許多報告缺乏評估篩選品質或重現實驗所需的基本資訊,但近年來,隨著 iPSC 衍生的細胞更多地應用於疾病模型開發,資訊的完整性和細胞生物學相關性呈現上升趨勢。

作者也對使用 iPSC 衍生神經細胞進行體外疾病建模和篩選提供了技術指導。內容涵蓋了 iPSC的選擇、細胞培養的最佳實踐、神經分化的標準化,以及檢測方法的開發和驗證。文中強調,為了確保結果的可重複性和意義,需要對 iPSC 及其衍生的神經細胞進行全面的品質控制。此外,文章還探討了未來發展方向,包括共培養相關細胞類型和開發三維細胞培養模型,以更真實地模擬體內疾病的微環境。


註:本文僅為科學期刊討論,並無醫學治療的建議。

參考文獻:Best Practices for Translational Disease Modeling Using Human iPSC-Derived Neurons. Engle SJ, Blaha L, Kleiman RJ.. Neuron. 2018 Nov 21;100(4):783-797. 


avatar-img
5會員
123內容數
歡迎來到伊桑的書摘!我是Ethan,一位熱愛讀書的人,致力於每年閱讀一百本好書,並將從中汲取的智慧分享給志同道合的朋友。這裡的內容專為那些追求長壽與智慧朋友而設計,涵蓋最新的科學研究、健康觀點,並以歐美醫藥哲學的角度探討疾病預防與養生之道。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
伊桑的書摘 的其他內容
這篇文章主要探討了CAR-T細胞治療的最新進展與挑戰。自2017年以來,FDA已批准多種CAR-T療法用於治療血癌,但在療效、安全性與適用範圍上仍存在限制 。
本文介紹一種可擴展的懸浮培養方法,用於大量生產人類誘導性多能幹細胞(iPSC)來源的巨噬細胞(iPSC-Mac)。此方法利用 在攪拌槽生物反應器(STBR)中培養的骨髓細胞形成複合物(MCFC)中間體,實現了巨噬細胞的連續生產。
本文探討 CAR-T 細胞療法在癌症治療中的應用,以及如何克服 T 細胞耗竭的問題。CAR T 細胞療法的基礎概念和其在血液腫瘤治療中的成功。CAR-T 細胞療法是一種非常有潛力的癌症治療方法,尤其是在血液惡性腫瘤方面表現出卓越的抗腫瘤活性。
本篇文章深入探討了誘導性多功能幹細胞(iPSCs)在疾病建模、再生醫學和藥物開發方面的應用與挑戰。簡單來說,iPSCs就像是人體細胞的「時光機」,可以將成熟的細胞,例如皮膚細胞,重新編程回類似胚胎幹細胞的狀態,具有分化成各種細胞類型的能力。
傳統的自體 CAR-T 細胞療法是從病患自身提取 T 細胞進行改造,雖然效果顯著,但製程耗時、成本高昂,且可能因病患 T 細胞功能不佳而影響療效。為了解決這些問題,科學家們開始開發「現成」的異體 CAR-T 細胞療法,也就是使用健康捐贈者的 T 細胞來製造 CAR-T 細胞,這樣可以降低成本等等。
漢丁頓舞蹈症是一種遺傳性的神經退化疾病,主要原因是患者的基因中CAG重複序列過多,導致製造出來的漢丁頓蛋白(huntingtin, Htt)變異,進而傷害腦部神經細胞。這種疾病會影響患者的運動功能、認知能力和情緒。目前,沒有有效的治癒方法,現有的治療僅能緩解症狀,無法阻止疾病惡化。
這篇文章主要探討了CAR-T細胞治療的最新進展與挑戰。自2017年以來,FDA已批准多種CAR-T療法用於治療血癌,但在療效、安全性與適用範圍上仍存在限制 。
本文介紹一種可擴展的懸浮培養方法,用於大量生產人類誘導性多能幹細胞(iPSC)來源的巨噬細胞(iPSC-Mac)。此方法利用 在攪拌槽生物反應器(STBR)中培養的骨髓細胞形成複合物(MCFC)中間體,實現了巨噬細胞的連續生產。
本文探討 CAR-T 細胞療法在癌症治療中的應用,以及如何克服 T 細胞耗竭的問題。CAR T 細胞療法的基礎概念和其在血液腫瘤治療中的成功。CAR-T 細胞療法是一種非常有潛力的癌症治療方法,尤其是在血液惡性腫瘤方面表現出卓越的抗腫瘤活性。
本篇文章深入探討了誘導性多功能幹細胞(iPSCs)在疾病建模、再生醫學和藥物開發方面的應用與挑戰。簡單來說,iPSCs就像是人體細胞的「時光機」,可以將成熟的細胞,例如皮膚細胞,重新編程回類似胚胎幹細胞的狀態,具有分化成各種細胞類型的能力。
傳統的自體 CAR-T 細胞療法是從病患自身提取 T 細胞進行改造,雖然效果顯著,但製程耗時、成本高昂,且可能因病患 T 細胞功能不佳而影響療效。為了解決這些問題,科學家們開始開發「現成」的異體 CAR-T 細胞療法,也就是使用健康捐贈者的 T 細胞來製造 CAR-T 細胞,這樣可以降低成本等等。
漢丁頓舞蹈症是一種遺傳性的神經退化疾病,主要原因是患者的基因中CAG重複序列過多,導致製造出來的漢丁頓蛋白(huntingtin, Htt)變異,進而傷害腦部神經細胞。這種疾病會影響患者的運動功能、認知能力和情緒。目前,沒有有效的治癒方法,現有的治療僅能緩解症狀,無法阻止疾病惡化。
你可能也想看
Google News 追蹤
提問的內容越是清晰,強者、聰明人越能在短時間內做判斷、給出精準的建議,他們會對你產生「好印象」,認定你是「積極」的人,有機會、好人脈會不自覺地想引薦給你
Thumbnail
有研究發現,人類大腦可能是一台大型量子電腦,此時做個大膽假設「大腦可以進行量子運作」,大腦中的電子神經元運作,就是接受來自宇宙深處的電訊號。
Thumbnail
若從限制酶(restriction endonuclease)發現(1970)的時代開始算起,人類「玩」基因,或者說,改變基因序列、進行「基因工程」的歷史已有數十年。最近的CRISPR更是膾炙人口! 從這一期《自然》期刊熱騰騰剛剛出爐的基因編輯神器是:IS110!
Thumbnail
CRISPR Therapetics 是一家以基因編輯療法為主打的生物科技公司,去年 FDA 批准該公司基因編輯療法 CASGEVY,用以治療鐮刀型貧血症,華爾街日報形容,此讓「基因編輯革命從實驗室走向市場」。這就是它的投資故事,而在該療法獲批准後的第一個季度,述說的是怎麼樣的情況,我們一起來看看…
Thumbnail
感知器是一種基本的神經網路模型,用於二分類問題。它模擬了人腦神經元的工作原理,通過調整權重和偏差值來達到預測和分類的目的。 感知器流程 輸入 資料的輸入: 輸入層接受資料的輸入,每個輸入對應一個特徵,還有一個固定的偏差神經元。 資料經過每個神經元時,會乘上相應的
Thumbnail
本文章探討了多智能體系統(MAS)在生成式AI領域中的應用,以及GenAI對於AI_MCU和Software defined hardware的影響。文章還總結了SDH設計模式對數據科學和人工智能時代的影響,並提供了有關GenAI的一些額外信息。
Thumbnail
*從Embedded World看到,AI在工業領域的發展,會比原本預期再慢一點。 *目前在消費端、服務端,例如顧問業者、客服、buy now pay later等業務,有很多AI功能、LLM模型導入。 --初階的碼農容易被AI取代。 *工業端,最早是PLC編程,到IPC,未來在IPC裡面 會
Thumbnail
腦類器官指的是利用幹細胞培養出的三維神經組織,目前多數的腦類器官是由多能幹細胞培養而來,大小約為米粒大小。然而,目前的腦類器官仍缺少例如人腦結構的各個腦區的區別。為此,有科學家提出使用由胚胎大腦取出的組織幹細胞來培養腦類器官,以解決此問題。
Thumbnail
腦類器官 腦類器官指的是利用幹細胞培養出的三維神經組織。目前的研究已經證明腦類器官具備大腦細胞(包括神經元和星狀細胞)的基本結構和功能。近期,科學家利用腦類器官來作為人工智慧實體裝置。本文將簡介此研究。
Thumbnail
2016/10/2-10/8   今年的諾貝爾獎,化學:「分子機器的設計與合成」、醫學:「細胞自噬機制」、物理:「用數學上的拓朴原理來解釋物質相變」。人類歷史上,習慣用圖騰與儀式來凝聚群眾的心力,廣大的智慧與力量,早已深藏在微小的世界裡。     「溝通不便、專業不明、金額巨大」造成
提問的內容越是清晰,強者、聰明人越能在短時間內做判斷、給出精準的建議,他們會對你產生「好印象」,認定你是「積極」的人,有機會、好人脈會不自覺地想引薦給你
Thumbnail
有研究發現,人類大腦可能是一台大型量子電腦,此時做個大膽假設「大腦可以進行量子運作」,大腦中的電子神經元運作,就是接受來自宇宙深處的電訊號。
Thumbnail
若從限制酶(restriction endonuclease)發現(1970)的時代開始算起,人類「玩」基因,或者說,改變基因序列、進行「基因工程」的歷史已有數十年。最近的CRISPR更是膾炙人口! 從這一期《自然》期刊熱騰騰剛剛出爐的基因編輯神器是:IS110!
Thumbnail
CRISPR Therapetics 是一家以基因編輯療法為主打的生物科技公司,去年 FDA 批准該公司基因編輯療法 CASGEVY,用以治療鐮刀型貧血症,華爾街日報形容,此讓「基因編輯革命從實驗室走向市場」。這就是它的投資故事,而在該療法獲批准後的第一個季度,述說的是怎麼樣的情況,我們一起來看看…
Thumbnail
感知器是一種基本的神經網路模型,用於二分類問題。它模擬了人腦神經元的工作原理,通過調整權重和偏差值來達到預測和分類的目的。 感知器流程 輸入 資料的輸入: 輸入層接受資料的輸入,每個輸入對應一個特徵,還有一個固定的偏差神經元。 資料經過每個神經元時,會乘上相應的
Thumbnail
本文章探討了多智能體系統(MAS)在生成式AI領域中的應用,以及GenAI對於AI_MCU和Software defined hardware的影響。文章還總結了SDH設計模式對數據科學和人工智能時代的影響,並提供了有關GenAI的一些額外信息。
Thumbnail
*從Embedded World看到,AI在工業領域的發展,會比原本預期再慢一點。 *目前在消費端、服務端,例如顧問業者、客服、buy now pay later等業務,有很多AI功能、LLM模型導入。 --初階的碼農容易被AI取代。 *工業端,最早是PLC編程,到IPC,未來在IPC裡面 會
Thumbnail
腦類器官指的是利用幹細胞培養出的三維神經組織,目前多數的腦類器官是由多能幹細胞培養而來,大小約為米粒大小。然而,目前的腦類器官仍缺少例如人腦結構的各個腦區的區別。為此,有科學家提出使用由胚胎大腦取出的組織幹細胞來培養腦類器官,以解決此問題。
Thumbnail
腦類器官 腦類器官指的是利用幹細胞培養出的三維神經組織。目前的研究已經證明腦類器官具備大腦細胞(包括神經元和星狀細胞)的基本結構和功能。近期,科學家利用腦類器官來作為人工智慧實體裝置。本文將簡介此研究。
Thumbnail
2016/10/2-10/8   今年的諾貝爾獎,化學:「分子機器的設計與合成」、醫學:「細胞自噬機制」、物理:「用數學上的拓朴原理來解釋物質相變」。人類歷史上,習慣用圖騰與儀式來凝聚群眾的心力,廣大的智慧與力量,早已深藏在微小的世界裡。     「溝通不便、專業不明、金額巨大」造成