大學微積分題解-微分的應用

更新於 發佈於 閱讀時間約 3 分鐘

導數 f’ 對 f 的影響?

反映函數 f(x) 的斜率與變化趨勢,若函數 f(x) 在定義域內某區間 (a, b) 滿足:

raw-image

而今天當 f'(x)正號變為負號的同時, 也就是最大值發生的地方,反之,如果當 f'(x) 負號變為正號的同時, 也就是最小值發生的地方。

極大值、極小值

  • 局部極大值:若在某區間內,f(c) 大於附近所有 f(x),則稱 f(x)x = c 有局部極大值。
  • 局部極小值:若在某區間內,f(c) 小於附近所有 f(x),則稱 f(x)x = c 有局部極小值。
  • 絕對極值:在定義域內,f(x) 的最大與最小值。

二次導數 f'' 對函數 f 的影響?

反映函數的凹向性,一個函數圖形彎曲方向,通常可分為凹向上凹向下兩種。若函數圖形 f(x) 在區間內可微分,過某點做一條切線,並且其二階導數 f''(x) 存在,則。

raw-image

反曲點

反曲點的定義是一條連續曲線由凸轉凹,或由凹轉凸的點,也可以說在那一點左右兩側的凹向性會不同。

函數極值的求法

  1. 求導函數 f'(x)
  2. 找出 臨界點f'(x) = 0不存在的點
  3. 使用一階二階導數法測試:
    • 一階導數法測試:根據f'(x) 兩側符號變化決定是否為臨界點
    • 二階導數法測試:若 f''(c) > 0 則是極小值;f''(c) < 0 則是極大值
  4. 若為封閉區間,需同時考慮端點,與臨界點一起比較 f(x) 值,找出絕對極值。
  5. 最後要注意,f'(a) = 0 代表 f(x) 在 x=a 處有水平切線,並不一定代表 x=a 處一定有極值,須利用左右兩側的增減情形判別。

練習題

raw-image

Step 1:一階導數

raw-image

Step 2:找出臨界點(令 f′(x)=0)

raw-image

所以 x=0 是臨界點

Step 3:根據f'(x) 兩側符號變化判別

這邊比較特別,二階導數有一些Case存在,若

raw-image

這種情況下,二階導數法將失敗,無法判斷出來是極值。

其中

raw-image


這種情況下我們可以說導數有「重根」。

好,所以本題我們必須使用一階導數法

raw-image

導數在 x=0 左右兩側都為正 → 沒有變號

Step 4:最終結論:

raw-image

反曲點的求法

若要求反區點,其概念跟上面很相似,若該曲線圖形的函數在某點的二階導數為零或不存在,且二階導數在該點兩側符號相反,該點即為函數的反曲點,要注意,有些函數圖形在 f''(a) = 0 並不一定代表點 f(a, f(a)) 一定是反曲,須利用左右兩側圖形的凹向性來判別。

練習題


raw-image

Step 1:求導數

raw-image

Step 2:求二階導數

raw-image

Step 3:解二階導數為 0

raw-image

Step 4:測試兩側凹向性

raw-image

所以:y'' x=1 處由正變負,確實是反曲點。

Step 5:求對應的 y 值

raw-image

最終答案:

raw-image

函數圖形的描繪

好,最後我們其實可以利用上面的知識,將給定的 f(x) 畫出相應的函數圖形,以下示範:

例如,求:

raw-image

Step 1:求一階導數

raw-image

Step 2:求二階導數

raw-image

Step 3:列表觀察符號變化

raw-image

Step 4:根據表繪製函數圖形

raw-image
raw-image

本頻道持續更新中(內容涵蓋前端程式設計入門、大學必備程式設計入門、電子系專業課程入門、數學微積分題解)如果身旁有相關科系的學生,不妨推薦一下喔~

相信這裡會是家教或線上課程之外,高中、大學生系統性綜合學習的好選擇。

最後感謝您的觀看!

留言
avatar-img
留言分享你的想法!
avatar-img
電資鼠 - 您的學習好夥伴
9會員
215內容數
在當今數位時代,電資領域人才需求爆發式成長,不論是前端網頁設計、嵌入式開發、人工智慧、物聯網還是軟硬體整合,這些技術都在改變世界。而掌握 C/C++、Python、數位邏輯、電路學與嵌入式開發等大學電資領域的課程,正是進入這個高薪、高需求產業的關鍵!
2025/04/29
在本章節中,透過詳細解說,讓讀者認識極座標的幾何意意與概念。
Thumbnail
2025/04/29
在本章節中,透過詳細解說,讓讀者認識極座標的幾何意意與概念。
Thumbnail
2025/04/29
一條曲線 y=f(x),在 x∈[a,b] 上,繞著 x 軸旋轉一圈,所形成的就是一個旋轉體的表面。本章節的目標是:求這個旋轉曲面的面積。
Thumbnail
2025/04/29
一條曲線 y=f(x),在 x∈[a,b] 上,繞著 x 軸旋轉一圈,所形成的就是一個旋轉體的表面。本章節的目標是:求這個旋轉曲面的面積。
Thumbnail
2025/04/29
本章節介紹弧長公式的推導。
Thumbnail
2025/04/29
本章節介紹弧長公式的推導。
Thumbnail
看更多
你可能也想看
Thumbnail
沙龍一直是創作與交流的重要空間,這次 vocus 全面改版了沙龍介面,就是為了讓好內容被好好看見! 你可以自由編排你的沙龍首頁版位,新版手機介面也讓每位訪客都能更快找到感興趣的內容、成為你的支持者。 改版完成後可以在社群媒體分享新版面,並標記 @vocus.official⁠ ♥️ ⁠
Thumbnail
沙龍一直是創作與交流的重要空間,這次 vocus 全面改版了沙龍介面,就是為了讓好內容被好好看見! 你可以自由編排你的沙龍首頁版位,新版手機介面也讓每位訪客都能更快找到感興趣的內容、成為你的支持者。 改版完成後可以在社群媒體分享新版面,並標記 @vocus.official⁠ ♥️ ⁠
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動  七 雖然論爭沒有得出任何定論,但對函數概念的演化卻影嚮頗深。 在這次歷時多年的論爭中,函數概念得以擴大而包括
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動  七 雖然論爭沒有得出任何定論,但對函數概念的演化卻影嚮頗深。 在這次歷時多年的論爭中,函數概念得以擴大而包括
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
Thumbnail
直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
Thumbnail
微積分是許多人的夢魘,但事實上卻是我們早已接觸過的知識,就像速度、距離和時間的關係一樣,一直以來都影響著我們的生活。 它教導了我們積極的生活態度,並且與許多生活面向息息相關,例如收入和儲蓄,個人成長策略和生活習慣。 這篇文章通過這些例子解釋了微積分的基本邏輯。
Thumbnail
微積分是許多人的夢魘,但事實上卻是我們早已接觸過的知識,就像速度、距離和時間的關係一樣,一直以來都影響著我們的生活。 它教導了我們積極的生活態度,並且與許多生活面向息息相關,例如收入和儲蓄,個人成長策略和生活習慣。 這篇文章通過這些例子解釋了微積分的基本邏輯。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News