大學數位邏輯講義課程系列-二進位數值運算

更新於 發佈於 閱讀時間約 2 分鐘

前導

數位電路做四則運算(加、減;乘、除)大都只用加法一種運算來完成,以達成減化電路的目的,減法乃利用+補數來完成,乘法用連加或向左移來完成,除法則利用連減或向右移來完成。

二進位減法

1的補數減法

1的補數減法,其步驟如下:

  1. 取減數 (B) 的 1 的補數:將 B 的每一位反轉 (0 變 1,1 變 0)。
  2. 將被減數 (A) 和 1 的補數 B 相加。
  3. 若有進位 (Carry-out),則加回最低位 (End-around carry),稱為端迴進位,其結果以1的補數表示法呈現

範例: 以1的補數法計算1010(2)-0110(2)

raw-image

範例2: 以1的補數法計算0011(2)-0110(2)

raw-image

2的補數減法

2的補數減法,其步驟如下:

  1. 取減數 (B) 的 2 的補數:
    • 先取 1 的補數 (反轉所有位元)。
    • 再加 1。
  1. 將被減數 (A) 和 2 的補數 B 相加。
  2. 如果最高位產生進位 (Carry-out),則忽略進位,其結果以2的補數表示法呈現,若結果為負數,再取 2 的補數得到正確結果。

範例: 以2的補數法計算1010(2)-0110(2)

raw-image

範例2: 以2的補數法計算1110(2)-0011(2)

raw-image

加法、乘法與除法

與十進位的觀念大同小異,如下示範:

raw-image

溢位

當計算機執行算術運算時,若所得的結果超過其位元數所能表示的範圍,則稱為溢位,導致運算結果不正確。

溢位通常發生在有號數的運算中,因為有號數使用 2 的補數來表示。

今天使用 4 位元 (整數範圍 -8 ~ +7) 進行計算,其溢位發生的情況:

  1. 兩個正數相加發生溢位
raw-image
  • 另一種判斷方式(6 和 5 都是正數,但相加結果是負數,發生溢位。)
  1. 兩個負數相加發生溢位
raw-image
  • 另一種判斷方式(-5 和 -4 都是負數,但結果是正數,發生溢位。)

溢位判斷的方法,也可藉由溢位旗標(overflow flag;簡稱OF)來檢查運算結果是否溢位。

請觀察下圖:

raw-image

溢位旗標:

raw-image

其中:

  • Cn表示最高有效位元(MSB)的進位,即C3
  • Cn-1表示次高有效位元(MSB的右邊位元)的進位,即C2
  • OF=0,表示運算結果無溢位; 若OF=1,表示運算結果發生溢位,其答案是不正確的。

本頻道持續更新中(內容涵蓋前端程式設計入門、大學必備程式設計入門、電子系專業課程入門、數學微積分題解)如果身旁有相關科系的學生,不妨推薦一下喔~

相信這裡會是家教或線上課程之外,高中、大學生系統性綜合學習的好選擇。

最後感謝您的觀看!

留言
avatar-img
留言分享你的想法!
avatar-img
電資鼠 - 您的學習好夥伴
11會員
216內容數
在當今數位時代,電資領域人才需求爆發式成長,不論是前端網頁設計、嵌入式開發、人工智慧、物聯網還是軟硬體整合,這些技術都在改變世界。而掌握 C/C++、Python、數位邏輯、電路學與嵌入式開發等大學電資領域的課程,正是進入這個高薪、高需求產業的關鍵!
2025/04/30
接續上回,本章節的目的為使用 JK 正反器來設計出下面狀態圖的電路結構(建議先看完上一章節的逐步推導解說會比較好理解本章節的內容喔~)。
Thumbnail
2025/04/30
接續上回,本章節的目的為使用 JK 正反器來設計出下面狀態圖的電路結構(建議先看完上一章節的逐步推導解說會比較好理解本章節的內容喔~)。
Thumbnail
2025/04/30
我們知道要設計一電路需要知道規格之定義,然後我們藉由構建狀態圖,就可以開始準備設計電路,本章節從 D正反器開始,完整詳述狀態機電路設計的過程,幫助讀者輕鬆入門複雜觀念,為未來更深入的研究打下堅實基礎。
Thumbnail
2025/04/30
我們知道要設計一電路需要知道規格之定義,然後我們藉由構建狀態圖,就可以開始準備設計電路,本章節從 D正反器開始,完整詳述狀態機電路設計的過程,幫助讀者輕鬆入門複雜觀念,為未來更深入的研究打下堅實基礎。
Thumbnail
2025/04/30
這篇文章探討了莫爾機和米利機的狀態圖、狀態表建立、化簡以及狀態編碼等議題。文中詳細說明瞭狀態圖的組成元素、狀態轉換的規則,以及如何將狀態圖轉換為狀態表。此外,文章也闡述了狀態化簡的方法,以減少邏輯閘和正反器的數量,降低電路成本。最後,文章說明瞭如何為狀態分配唯一的二進位編碼值,以方便電路設計。
Thumbnail
2025/04/30
這篇文章探討了莫爾機和米利機的狀態圖、狀態表建立、化簡以及狀態編碼等議題。文中詳細說明瞭狀態圖的組成元素、狀態轉換的規則,以及如何將狀態圖轉換為狀態表。此外,文章也闡述了狀態化簡的方法,以減少邏輯閘和正反器的數量,降低電路成本。最後,文章說明瞭如何為狀態分配唯一的二進位編碼值,以方便電路設計。
Thumbnail
看更多
你可能也想看
Thumbnail
透過蝦皮分潤計畫,輕鬆賺取零用金!本文分享5-6月實測心得,包含數據流程、實際收入、平臺優點及注意事項,並推薦高分潤商品,教你如何運用空閒時間創造被動收入。
Thumbnail
透過蝦皮分潤計畫,輕鬆賺取零用金!本文分享5-6月實測心得,包含數據流程、實際收入、平臺優點及注意事項,並推薦高分潤商品,教你如何運用空閒時間創造被動收入。
Thumbnail
單身的人有些會養寵物,而我養植物。畢竟寵物離世會傷心,植物沒養好再接再厲就好了~(笑)
Thumbnail
單身的人有些會養寵物,而我養植物。畢竟寵物離世會傷心,植物沒養好再接再厲就好了~(笑)
Thumbnail
不知你有沒有過這種經驗?衛生紙只剩最後一包、洗衣精倒不出來,或電池突然沒電。這次一次補貨,從電池、衛生紙到洗衣精,還順便分享使用心得。更棒的是,搭配蝦皮分潤計畫,愛用品不僅自己用得安心,分享給朋友還能賺回饋。立即使用推薦碼 X5Q344E,輕鬆上手,隨時隨地賺取分潤!
Thumbnail
不知你有沒有過這種經驗?衛生紙只剩最後一包、洗衣精倒不出來,或電池突然沒電。這次一次補貨,從電池、衛生紙到洗衣精,還順便分享使用心得。更棒的是,搭配蝦皮分潤計畫,愛用品不僅自己用得安心,分享給朋友還能賺回饋。立即使用推薦碼 X5Q344E,輕鬆上手,隨時隨地賺取分潤!
Thumbnail
身為一個典型的社畜,上班時間被會議、進度、KPI 塞得滿滿,下班後只想要找一個能夠安靜喘口氣的小角落。對我來說,畫畫就是那個屬於自己的小樹洞。無論是胡亂塗鴉,還是慢慢描繪喜歡的插畫人物,那個專注在筆觸和色彩的過程,就像在幫心靈按摩一樣,讓緊繃的神經慢慢鬆開。
Thumbnail
身為一個典型的社畜,上班時間被會議、進度、KPI 塞得滿滿,下班後只想要找一個能夠安靜喘口氣的小角落。對我來說,畫畫就是那個屬於自己的小樹洞。無論是胡亂塗鴉,還是慢慢描繪喜歡的插畫人物,那個專注在筆觸和色彩的過程,就像在幫心靈按摩一樣,讓緊繃的神經慢慢鬆開。
Thumbnail
本章節將帶你深入了解數位系統中最核心的運算基礎 —— 二進位數值運算。電腦與數位電路無論進行加法、減法,甚至乘法與除法,本質上都是在處理 0 與 1 組成的數字。透過學習這些運算方式,你將真正掌握數位邏輯電路背後的數學語言與運作邏輯。
Thumbnail
本章節將帶你深入了解數位系統中最核心的運算基礎 —— 二進位數值運算。電腦與數位電路無論進行加法、減法,甚至乘法與除法,本質上都是在處理 0 與 1 組成的數字。透過學習這些運算方式,你將真正掌握數位邏輯電路背後的數學語言與運作邏輯。
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 二 關於函數的演變和弗雷格對函數的看法,前面的 1.2 節和 1.3 節已經談論了不少。 由於函數在數學﹑邏輯學﹑計算語言學極為重要,更且是本書闡述的語法的中心概念,因此有必要再略作
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 二 關於函數的演變和弗雷格對函數的看法,前面的 1.2 節和 1.3 節已經談論了不少。 由於函數在數學﹑邏輯學﹑計算語言學極為重要,更且是本書闡述的語法的中心概念,因此有必要再略作
Thumbnail
數位IC裡我們關注的都是0或1, 大家都知道電腦是0101在做二進位的運算, 在晶片裡又是怎麼做到的? 實際上我們在設計晶片時,會給他一個VDD跟GND, VDD-GND給的是預期的Driving volatge, 像是5V或9V 以5V為例 0或1物理上就是目前的電壓靠近0V或5
Thumbnail
數位IC裡我們關注的都是0或1, 大家都知道電腦是0101在做二進位的運算, 在晶片裡又是怎麼做到的? 實際上我們在設計晶片時,會給他一個VDD跟GND, VDD-GND給的是預期的Driving volatge, 像是5V或9V 以5V為例 0或1物理上就是目前的電壓靠近0V或5
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News