付費限定

大學數位邏輯講義課程系列-非2^n模同步計數器

更新 發佈閱讀 1 分鐘

若要設計非2n模計數器,則必須讓計數器提早歸0。

為此,我們通常會使用帶有清除功能的正反器,若使用低態清除的正反器,則我們會使用反及閘做回授清除。

以行動支持創作者!付費即可解鎖
本篇內容共 386 字、0 則留言,僅發佈於電子系專業課程入門你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
電資鼠 - 您的學習好夥伴
14會員
242內容數
在當今數位時代,電資領域人才需求爆發式成長,不論是前端網頁設計、嵌入式開發、人工智慧、物聯網還是軟硬體整合,這些技術都在改變世界。而掌握 C/C++、Python、數位邏輯、電路學與嵌入式開發等大學電資領域的課程,正是進入這個高薪、高需求產業的關鍵!
2025/04/29
本篇文章深入淺出地介紹非同步計數器,包含其基本概念、組成元件、上數及下數計數器的時序分析。文中搭配圖表說明,並輔以真值表與時序圖,讓讀者能更清晰地瞭解非同步計數器的運作原理。此外,文章也探討了使用T型正反器和D型正反器實現非同步計數器的可能性,並闡述了每個正反器的除2功能以及50%的工作週期特性。
Thumbnail
2025/04/29
本篇文章深入淺出地介紹非同步計數器,包含其基本概念、組成元件、上數及下數計數器的時序分析。文中搭配圖表說明,並輔以真值表與時序圖,讓讀者能更清晰地瞭解非同步計數器的運作原理。此外,文章也探討了使用T型正反器和D型正反器實現非同步計數器的可能性,並闡述了每個正反器的除2功能以及50%的工作週期特性。
Thumbnail
2025/04/29
(一) 如圖,是由RS正反器組成的XY正反器,求XY正反器的真值表? 首先,我們先針對輸入端的訊號做分析: R端: S端: 我們接著來寫出電路的完整真值表: 所以,XY正反器的真值表如下所示: (二) 若要使用 JK 正反器設計下表的 AB 正反器,如何設計? 我們同樣使用正反器設
Thumbnail
2025/04/29
(一) 如圖,是由RS正反器組成的XY正反器,求XY正反器的真值表? 首先,我們先針對輸入端的訊號做分析: R端: S端: 我們接著來寫出電路的完整真值表: 所以,XY正反器的真值表如下所示: (二) 若要使用 JK 正反器設計下表的 AB 正反器,如何設計? 我們同樣使用正反器設
Thumbnail
2025/04/29
本章節介紹 T型正反器。
Thumbnail
2025/04/29
本章節介紹 T型正反器。
Thumbnail
看更多
你可能也想看
Thumbnail
數位IC裡我們關注的都是0或1, 大家都知道電腦是0101在做二進位的運算, 在晶片裡又是怎麼做到的? 實際上我們在設計晶片時,會給他一個VDD跟GND, VDD-GND給的是預期的Driving volatge, 像是5V或9V 以5V為例 0或1物理上就是目前的電壓靠近0V或5
Thumbnail
數位IC裡我們關注的都是0或1, 大家都知道電腦是0101在做二進位的運算, 在晶片裡又是怎麼做到的? 實際上我們在設計晶片時,會給他一個VDD跟GND, VDD-GND給的是預期的Driving volatge, 像是5V或9V 以5V為例 0或1物理上就是目前的電壓靠近0V或5
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
目錄 序 導論: 一個西方觀點的評述 1.0 從函數到函數算法 ......1.1 句子成份
Thumbnail
目錄 序 導論: 一個西方觀點的評述 1.0 從函數到函數算法 ......1.1 句子成份
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News