心統 | 機率 | 連續變項常態分配(Normal distribution)

小梁-avatar-img
發佈於心統
更新 發佈閱讀 1 分鐘
常態分配:常見事物的分配

我們透過觀察可以知道很多事物的分配呈現常態分配,例如:IQ、身高、兩顆骰子擲的點數等等。不管是間接變項或是連續變項,只要分配呈現左右對稱就可以稱之為常態分配。

常態分配為什麼重要

就像我們剛剛所說的,世界上許多事情是常態分配,所以當我們不確定我們要推論的事情是什麼分配時,就先假設是常態分配。因此,我們提到的統計方法大多要以常態分配作為前提。

連續變項的機率分配

因為連續變項可以無限分割,因此特定值得機率微乎其微。例如:找到年齡是26年又46天的人機率是多少?是不是很難找!如果又分割到時間的話,更是可遇不可求了!

因此,我們會用「區間」與「機率密度」來計算。

raw-image

除了找z-table之外,有些常用的資料比例分配也可以記一下。

raw-image
留言
avatar-img
留言分享你的想法!
avatar-img
小梁的沙龍
0會員
71內容數
心理小白,撰寫一些心理學習的紀錄和其他想分享的事物!喜歡的話歡迎關注和按愛心給予支持喔~
小梁的沙龍的其他內容
2025/06/21
終於來到我們的大魔王推論統計啦!在這裡先給大家打個預防針,推論統計有很多種不一樣的方法,後面這一段路不像前面那麼好理解,所以不要急慢慢打好基礎,後面才不會搞混喔!準備好了嗎?開始囉~~ 推論統計建立在「機率」上 這句話大概是學推論統計時,最不能忘記的核心!「推論」一詞說明的即是我的假設多可能會發
Thumbnail
2025/06/21
終於來到我們的大魔王推論統計啦!在這裡先給大家打個預防針,推論統計有很多種不一樣的方法,後面這一段路不像前面那麼好理解,所以不要急慢慢打好基礎,後面才不會搞混喔!準備好了嗎?開始囉~~ 推論統計建立在「機率」上 這句話大概是學推論統計時,最不能忘記的核心!「推論」一詞說明的即是我的假設多可能會發
Thumbnail
2025/06/20
上一集我們探討的是PR值,這次我們要來說在統計裡很常用到的概念—標準分數。 原始分數的線性轉換 y = ax + b 線性轉換相信大家都並不陌生。當我們想要求標準分數的時候,我們就需要將原始分數做線性轉換,這個過程我們稱之為「標準化」。 z分數就是離均差除上標準差,以標準差為單位,看看自己的
Thumbnail
2025/06/20
上一集我們探討的是PR值,這次我們要來說在統計裡很常用到的概念—標準分數。 原始分數的線性轉換 y = ax + b 線性轉換相信大家都並不陌生。當我們想要求標準分數的時候,我們就需要將原始分數做線性轉換,這個過程我們稱之為「標準化」。 z分數就是離均差除上標準差,以標準差為單位,看看自己的
Thumbnail
2025/06/18
集中量數和分散量數只能夠描述數據的分布狀況,如果我今天想知道自己在這些數據裡是在哪個位置的話,就需要用到接下來要介紹的相對位置指標了!相對位置指標我們會分別介紹百分等級、z分數、t分數,就讓我們繼續看下去吧! 從最簡單的排排站說起! 當我們想要知道自己在班上多高的時候,我們就會從矮到高排成一直列
Thumbnail
2025/06/18
集中量數和分散量數只能夠描述數據的分布狀況,如果我今天想知道自己在這些數據裡是在哪個位置的話,就需要用到接下來要介紹的相對位置指標了!相對位置指標我們會分別介紹百分等級、z分數、t分數,就讓我們繼續看下去吧! 從最簡單的排排站說起! 當我們想要知道自己在班上多高的時候,我們就會從矮到高排成一直列
Thumbnail
看更多
你可能也想看
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
選舉民調是預測選舉結果的重要工具。然而,如果我們不了解樣本和母體的概念,就很容易被民調結果誤導。 在本文中,我們將介紹樣本和母體的概念,以及它們對民調結果的影響。我們還將提供一些在閱讀民調報告時的注意事項。
Thumbnail
選舉民調是預測選舉結果的重要工具。然而,如果我們不了解樣本和母體的概念,就很容易被民調結果誤導。 在本文中,我們將介紹樣本和母體的概念,以及它們對民調結果的影響。我們還將提供一些在閱讀民調報告時的注意事項。
Thumbnail
接續上一篇,繼續來講如何從常態分布的機率進行假設檢定,進而推論母體的平均數吧! 這篇會提到否證的邏輯、魔法數字0.5以及統計檢定到底是什麼這三個主題。
Thumbnail
接續上一篇,繼續來講如何從常態分布的機率進行假設檢定,進而推論母體的平均數吧! 這篇會提到否證的邏輯、魔法數字0.5以及統計檢定到底是什麼這三個主題。
Thumbnail
 當開啟試算表(EXCEL等)的累加(SUM)及離散度,標準差(STDEV)的運算功能後,逐一統計的累進報票式選票統計表就可以退休了,而且全國一萬七千多所的數據不待一所所列出,就可以用較小選區(例如嘉義市198所,宜蘭縣431所等)的統計過程證明統計結果都是正確的,尤其是將計算式列出(隱藏前面的
Thumbnail
 當開啟試算表(EXCEL等)的累加(SUM)及離散度,標準差(STDEV)的運算功能後,逐一統計的累進報票式選票統計表就可以退休了,而且全國一萬七千多所的數據不待一所所列出,就可以用較小選區(例如嘉義市198所,宜蘭縣431所等)的統計過程證明統計結果都是正確的,尤其是將計算式列出(隱藏前面的
Thumbnail
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。
Thumbnail
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。
Thumbnail
依照中央極限定理,我們可以得知(獨立且隨機樣本的)抽樣分布最終會形成常態分佈,那麼這件事情到底為什麼很重要呢? 這篇文章就來介紹一些常態分布的基本特性,以及最重要的──常態分布怎麼幫助我們計算機率。
Thumbnail
依照中央極限定理,我們可以得知(獨立且隨機樣本的)抽樣分布最終會形成常態分佈,那麼這件事情到底為什麼很重要呢? 這篇文章就來介紹一些常態分布的基本特性,以及最重要的──常態分布怎麼幫助我們計算機率。
Thumbnail
今天來聊點較無聊, 不用說你也都會, 但不說也不會注意到的細節。這樣的內容較生硬, 在生活中也較少用到, 但在考試時不小心寫錯絕對會被撇掉, 在跟數學家溝通時不小心誤用, 對方絕對會跳針, 跳針, 再跳針。
Thumbnail
今天來聊點較無聊, 不用說你也都會, 但不說也不會注意到的細節。這樣的內容較生硬, 在生活中也較少用到, 但在考試時不小心寫錯絕對會被撇掉, 在跟數學家溝通時不小心誤用, 對方絕對會跳針, 跳針, 再跳針。
Thumbnail
要觀察一個數值的集合有很多方法,透過這些方法得出數值集合的某些特徵,可以讓我們除了「感覺」外,能有更「理性客觀」的方式來理解這個數值集合的特徵。 眾數:一個集合中出現最多次的那個元素,以此作為一個集合的代表性特徵算是很直覺的作法。但缺點是,以眾數作為一個集合的標籤,我們無法透過眾數得知
Thumbnail
要觀察一個數值的集合有很多方法,透過這些方法得出數值集合的某些特徵,可以讓我們除了「感覺」外,能有更「理性客觀」的方式來理解這個數值集合的特徵。 眾數:一個集合中出現最多次的那個元素,以此作為一個集合的代表性特徵算是很直覺的作法。但缺點是,以眾數作為一個集合的標籤,我們無法透過眾數得知
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News