統計急救箱─常態分布與假設檢定(上)

更新於 發佈於 閱讀時間約 6 分鐘

  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。


結合抽樣分布與常態分布的機率特性

  先來想想「抽樣分布會成為常態」與「常態分布中的機率可以被計算出來」這兩件事情如何結合在一起,以及結合起來會發生什麼事?

  按照前面的慣例,我們還是先準備一個黑色大塑膠袋,裡面塞進去五顆0分球和五顆1分球。

  我們從袋子裡面隨機抽取n顆球出來(n小於10)並且計算得到的平均數,在重複做這件事情很多很多次之後,我們必然會得到一個常態的分布。這個分布稱為「抽樣分布 (sampling distribution)」。

根據中央極限定理,抽樣最終會得到常態分布

根據中央極限定理,抽樣最終會得到常態分布


  而又由於常態分布的特性,只要知道母體的平均數和標準差,就可以知道常態分布上任一點的發生機率。也就是說,在知道母體平均數和標準差的情況下,我們就可以推估這次抽樣得到的樣本平均數有多可能會發生。只不過實務上,我們更常會說的是推估「某個範圍之內」的平均數發生的機率有多高。

  例如對於母體平均數是0.5、標準差也是0.5的抽樣分布來說(也就是我們上面黑色塑膠袋裡的球),我隨便從裡面進行一次抽樣,在實際抽出來之前就可以知道有34.1%的機率會得到0~0.5之間的平均數。

知道母體平均和標準差,就可以計算某個範圍內抽樣平均數的發生機率

知道母體平均和標準差,就可以計算某個範圍內抽樣平均數的發生機率


  所以說,只要知道母體平均數和標準差,在抽樣之前我們其實就能輕鬆猜測這次的抽樣平均數會有多少機率落在某個範圍之內了。而這就是假設檢定的基礎。


從樣本推論母體的困難

  前面講這些抽樣分布和機率的時候,都有一個預設前提是我們知道大塑膠袋裡的球長成什麼樣。但這其實並不太符合實際情況...在現實生活中,更多時候我們根本不知道袋子裡的球有幾顆、每一種顏色的球有幾個。如果抽獎前你去問主辦單位,他們也很可能不會告訴你(通常他們只會跟你講最大獎有什麼來吸引你當分母...啊不是,我是說去抽獎)。

現實生活中,我們通常不知道母體是什麼樣子

現實生活中,我們通常不知道母體是什麼樣子


  如果我們很直觀的要問一個推論的問題,就會是:經過抽樣得到的樣本平均是M,那母體平均是多少?例如上圖,我從袋子裡抽出四顆球,得到平均數是1,那袋子裡面所有的球平均數(母體平均)是多少?

如果直觀的要推 論,會問出這樣的問題

如果直觀的要推 論,會問出這樣的問題


  這個問題是很難回答的,因為答案是不管母體長成怎樣,只要袋子裡面的1分球超過四顆,我們都有機會得到這種結果。就算說袋子裡面總共有100顆球,只有四顆球是1分,都不能說我們得到這個樣本的機率等於0對吧?也就是說,只靠這些資訊要推估母體的平均數,根本可以說有無限種可能性,完全沒辦法估計。

  那我們該怎麼辦呢?難道真的沒有辦法知道袋子裡的球是什麼樣子了嗎?


不知道母體平均數,我們就先假設一個

  奇怪,前面講抽樣分布的時候,好像推出個常態分布就覺得萬事OK,每一種可能性的機率都能算出來的樣子。但真實的數據我們卻沒辦法做到,是為什麼?

  答案是:因為我們從來就不知道母體的平均數和標準差是多少

  要像文章最開始講的那樣去推估每次抽樣有多少機率會落在哪個範圍之間,我們就必須要知道母體平均數和母體標準差。然而在現實中我們根本就不知道這兩個東西。畢竟我們就是想推估母體平均數是多少嘛...要是知道了幹嘛還需要推估啊。

  不過聰明的統計學家們就想到一個辦法:不知道平均數沒關係,我們「假設」出一個平均數就好了嘛!

  這個時候,要推論母體平均數的問題就有了另一種問法:「假設」母體平均數為mu,那麼得到現在這個抽樣結果的機率是多高?

不知道母體平均?就先假設一個吧!

不知道母體平均?就先假設一個吧!


  由於知道了一個假設的母體平均數,這時候我們就可以畫出從這個母體中進行抽樣所得到的抽樣分布曲線了(如果你好奇沒有標準差怎麼畫抽樣分布,在這裡我們也先假設我們知道,但標準差的問題我們要到 統計急救箱─抽樣分布與標準誤 才會解決)。而一旦我們知道這個抽樣分布曲線,就可以大概知道這次抽樣中所得到的結果,發生機率有多高啦~

  例如在下圖,我們就是假設母體平均數為0.5,畫出了藍色的抽樣分布曲線。這條曲線的最高點(也就是中心點)就會放在母體平均數的位置,而曲線的寬度(抽樣分布的標準差)則由母體標準差和樣本數來決定

假設母體平均數為某個數,就能依此畫出抽樣分布曲線

假設母體平均數為某個數,就能依此畫出抽樣分布曲線


  那麼這個時候就如同文章一開始提到的那樣,我們可以從常態分布曲線來推估每個點的發生機率大概是多少了。而每一次的抽樣結果(抽樣後算出的平均數)都會是一個點,就是下圖中標記出的「觀察結果1」、「觀察結果2」這兩個位置。

  那麼我們要怎麼解讀這張圖呢?

  還記得用常態分布來推論機率,在實務上是推論「一個範圍」嗎?在下圖當中,就有兩個紅色的雙箭頭標示出了68%和95%的範圍。其意義是:「以現在的常態分布曲線為前提,在x軸當中進行任意一次抽樣,有68%的機率得到正負1個標準差之間的結果。」

  有時候,統計課本會用另一種方式描述:「以母體平均為mu,母體標準差為sigma的常態分布而言,在平均數加減兩個sigma的這段區間中包含了95%的資料。」其實是一樣的意思。

從常態分布曲線推估樣本發生的機率

從常態分布曲線推估樣本發生的機率


  現在來看觀察結果1的箭頭,我們要怎麼推估它的發生機率?方法是看它落在哪個區間之外、哪個區間之內。當觀察值(抽樣結果)落在某個區間之「外」的時候,它的發生機率是「小於」剩下的機率;當觀察值落在某個區間之「內」的時候,它的發生機率是「高於」剩下的機率。

  所以觀察結果1落在68%的區間之外,也就代表它發生的機率小於剩下的32%。然而,它又落在95%的區間之內,代表它發生的機會比剩下的5%機率更高。

在68%範圍外,發生機率小於剩下的32%

在68%範圍外,發生機率小於剩下的32%

在95%範圍內,表示發生機率大於剩下的5%

在95%範圍內,表示發生機率大於剩下的5%

因此,我們可以推估:「以母體平均數為mu,母體標準差為sigma畫出來的抽樣分布常態曲線,觀察結果1發生的機率介於5%到32%之間。」

  這樣的過程可以告訴我們一個很重要的資訊,就是:「以假設的母體平均數和標準差畫出來的抽樣分布而言,我們有多高的機會得到我們這次的抽樣結果?」

  在下一篇就會解釋要怎麼運用這個重要資訊來推論母體的平均數,也就是進行所謂的假設檢定囉!



  方格子的專題被整合在沙龍裡面了,還不太會設定沙龍這個東西呢...不過專題本身還存在就好了。



致謝

本文所用圖片當中的素材來自於https://www.flaticon.com,由juicy_fish創作。

留言
avatar-img
留言分享你的想法!
Way-avatar-img
發文者
2024/06/24
統計急救箱─常態Z分數與Z檢定提及了這篇文章,趕快過去看看吧!
avatar-img
統計急救箱的沙龍
67會員
32內容數
大學念文組,碩士班的報告突然要用統計了怎麼辦?沒學過統計怎麼寫量化學位論文?跟著統計書操作都沒問題,但報表都不知道在講什麼,也不知道做的分析到底對不對?作者在應用統計的路上跌跌撞撞也差不多十年了,希望有些心得可以幫助到有這些困擾的你。
2024/12/29
  上回講了獨立樣本t test的運作原理,不過實際的計算上我們還是叫統計軟體跑。對使用者來說更重要的事情反而是──什麼時候我們該使用獨立樣本t test,以及在什麼條件下可以使用獨立樣本t test?
Thumbnail
2024/12/29
  上回講了獨立樣本t test的運作原理,不過實際的計算上我們還是叫統計軟體跑。對使用者來說更重要的事情反而是──什麼時候我們該使用獨立樣本t test,以及在什麼條件下可以使用獨立樣本t test?
Thumbnail
2024/12/15
 在實務上,t檢定最常被拿來使用的時機是檢驗兩個群體的(母體)平均數是不是相同。
Thumbnail
2024/12/15
 在實務上,t檢定最常被拿來使用的時機是檢驗兩個群體的(母體)平均數是不是相同。
Thumbnail
2024/10/20
既然現在講完t檢定的基礎了,正好是時候來談談單樣本t檢定的重要用途之一:檢定相關係數的顯著性。
Thumbnail
2024/10/20
既然現在講完t檢定的基礎了,正好是時候來談談單樣本t檢定的重要用途之一:檢定相關係數的顯著性。
Thumbnail
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
介紹朋友新開的蝦皮選物店『10樓2選物店』,並分享方格子與蝦皮合作的分潤計畫,註冊流程簡單,0成本、無綁約,推薦給想增加收入的讀者。
Thumbnail
介紹朋友新開的蝦皮選物店『10樓2選物店』,並分享方格子與蝦皮合作的分潤計畫,註冊流程簡單,0成本、無綁約,推薦給想增加收入的讀者。
Thumbnail
這本書在我到書單中躺了很久,近期常常會思考著機率與人生際遇的關係,在某個人事物的環境下,為什麼會遇到很特別的,尤其是專家所宣稱的低機率事件發生,或是遇到環環相扣的巧合,這個疑問充滿著我的內心,這本書帶給我一些獨特的觀點去切入觀察,我先從基本知識探討信賴區間的本質開始談起。
Thumbnail
這本書在我到書單中躺了很久,近期常常會思考著機率與人生際遇的關係,在某個人事物的環境下,為什麼會遇到很特別的,尤其是專家所宣稱的低機率事件發生,或是遇到環環相扣的巧合,這個疑問充滿著我的內心,這本書帶給我一些獨特的觀點去切入觀察,我先從基本知識探討信賴區間的本質開始談起。
Thumbnail
最近天氣特別炎熱, 如果今天你想出門搭訕, 你知道在西門北車信義還是中山哪個地點比較容易有收穫嗎? 你會怎麼做得知這個資訊呢?
Thumbnail
最近天氣特別炎熱, 如果今天你想出門搭訕, 你知道在西門北車信義還是中山哪個地點比較容易有收穫嗎? 你會怎麼做得知這個資訊呢?
Thumbnail
機率,一個我們從小就會接觸到的名詞。 在開啟交易新手村的時候,便發現自己其實很不喜歡機率這件事,並非我不相信而是自己認為的機率只有0%或是100%。 其中的1%~99%我都認為它們不存在,但現在我已經慢慢接受這件事了。 但我發現人們對於機率的解讀存在著「巨大的差異」。(這實在是太有趣啦啦啦啦!) 例
Thumbnail
機率,一個我們從小就會接觸到的名詞。 在開啟交易新手村的時候,便發現自己其實很不喜歡機率這件事,並非我不相信而是自己認為的機率只有0%或是100%。 其中的1%~99%我都認為它們不存在,但現在我已經慢慢接受這件事了。 但我發現人們對於機率的解讀存在著「巨大的差異」。(這實在是太有趣啦啦啦啦!) 例
Thumbnail
有問題的在機率,國中機率不會太難,大致上重點放兩個。第一個是機率分獨立事件與否,一定要讓學生明白,有些事情是有關,有些無關。立體圖形的部分,就跟過去學到的差不多,會連圖形都弄不清楚,真的建議回去看小學高年級的幾何題目。
Thumbnail
有問題的在機率,國中機率不會太難,大致上重點放兩個。第一個是機率分獨立事件與否,一定要讓學生明白,有些事情是有關,有些無關。立體圖形的部分,就跟過去學到的差不多,會連圖形都弄不清楚,真的建議回去看小學高年級的幾何題目。
Thumbnail
人生不只一種可能,我算是典型那種嘴巴上說相信,但內底子有時候沒有全然接納開放觀念的人。
Thumbnail
人生不只一種可能,我算是典型那種嘴巴上說相信,但內底子有時候沒有全然接納開放觀念的人。
Thumbnail
這是很多統計學初學者會有的疑惑。大部分的統計數據呈現,像是人口調查、民調等等,都會利用抽樣來推估真實值,並在抽樣的結果附近加上一段信賴區間,可以簡單理解為誤差範圍(如果涉及統計推論則會呈現 p 值)。那個範圍會有他對應的信心水準,但很多人將其理解為「真實值落在這個範圍內的機率」,然而這其實是錯誤的。
Thumbnail
這是很多統計學初學者會有的疑惑。大部分的統計數據呈現,像是人口調查、民調等等,都會利用抽樣來推估真實值,並在抽樣的結果附近加上一段信賴區間,可以簡單理解為誤差範圍(如果涉及統計推論則會呈現 p 值)。那個範圍會有他對應的信心水準,但很多人將其理解為「真實值落在這個範圍內的機率」,然而這其實是錯誤的。
Thumbnail
#67《聰明思考》(下):我們怎麼樣得出「客觀」結論?說到客觀資訊可定脫離不了實驗與實驗結果的解讀,而判斷這些事情正是數學中統計上在做的事!欸欸!等等!別看到數學就想關掉啊!要理解這些不需要用到艱澀的數學概念,我們只要理解它們可以用在怎麼樣的情境裡、如何避免偏誤解讀,就可以利用統計的想法來幫助我們!
Thumbnail
#67《聰明思考》(下):我們怎麼樣得出「客觀」結論?說到客觀資訊可定脫離不了實驗與實驗結果的解讀,而判斷這些事情正是數學中統計上在做的事!欸欸!等等!別看到數學就想關掉啊!要理解這些不需要用到艱澀的數學概念,我們只要理解它們可以用在怎麼樣的情境裡、如何避免偏誤解讀,就可以利用統計的想法來幫助我們!
Thumbnail
好久不見了,大家。時間被研究工作排滿,加上我堅持11點睡覺,所以犧牲掉的就是我的部落格寫作。這是我參與讀書會所負責導讀的章節,《反智》的第四部。
Thumbnail
好久不見了,大家。時間被研究工作排滿,加上我堅持11點睡覺,所以犧牲掉的就是我的部落格寫作。這是我參與讀書會所負責導讀的章節,《反智》的第四部。
Thumbnail
《心得分享-隨機漫步的傻瓜》 讀完這本書的時候,我有一種奇怪的感覺,似乎這本書的內容是在描述我的行為,這感覺就像自己之前做過的作品,看到別人用另一種方式呈現,有一種似曾相似,卻又帶點不同,那不同之處,就是我帶有質疑。 事實上,身為一個相關專業者,我對機率與隨機性的認知超越多數人,只因為多數人並沒有深
Thumbnail
《心得分享-隨機漫步的傻瓜》 讀完這本書的時候,我有一種奇怪的感覺,似乎這本書的內容是在描述我的行為,這感覺就像自己之前做過的作品,看到別人用另一種方式呈現,有一種似曾相似,卻又帶點不同,那不同之處,就是我帶有質疑。 事實上,身為一個相關專業者,我對機率與隨機性的認知超越多數人,只因為多數人並沒有深
Thumbnail
『喔不!怎麼又沒有中獎?』看著手機畫面呈現熟悉的漆黑一片,我已經抽了數不清的次數,但那期待的本命遊戲角色就是不給我出現,我在內心裡抱頭吶喊『到底....什麼時候才能中獎啊!!』 明明中獎機率就寫在手機畫面上,但怎麼就是輪不到我呢?我懷疑是我真的運氣太差、還是遊戲商不誠實?又或是上帝根本就在叫我放棄
Thumbnail
『喔不!怎麼又沒有中獎?』看著手機畫面呈現熟悉的漆黑一片,我已經抽了數不清的次數,但那期待的本命遊戲角色就是不給我出現,我在內心裡抱頭吶喊『到底....什麼時候才能中獎啊!!』 明明中獎機率就寫在手機畫面上,但怎麼就是輪不到我呢?我懷疑是我真的運氣太差、還是遊戲商不誠實?又或是上帝根本就在叫我放棄
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News