你或許聽過只要每天進步1%,一年後就會有37倍的成長,可是如果每天退步一點點,結果只會剩下原本的0.03。所以要透過持之以恆的進步,讓時間複利產生驚人的成果。哦...真的是這樣?
寫在前面,以每天做一點微小改變這件事情而言,我是採認同的態度,但是說因為複利效應而讓你進步37倍(又或者退步成趨近於0),這說法打從第一次聽到就覺得怪,至於怪在哪?下面就用python畫個圖來看看就清楚了。
簡單的使用迴圈計算1.01的n次方計算結果,n=1代入一直到n=365,並且繪出對應的圖,為了看出端倪,我在圖上加了格線,以橫坐標來說每一格是10天,縱座標每一格是1倍。
以圖中格點來看,前150天的努力所達到的成果僅成長5倍,在第300天到第350天的50天內,成長從20倍到近33倍,因此可以知道在天數累積起來後會有顯著的提升。
接下來看一下實際一點的部分:
圖中的差值為了方便看出數值,我另外計算了最前面跟最後面的結果做比較,可以看到前三天所需要的進步都是0.01左右,而在最後三天需要的進步都是在0.37上下。
因此我認為比較貼近的狀況,大概會像是趕作業的情形:第一天寫一題中的一小題,第二天再寫一點,第三天再繼續,直到deadline快到了就一天寫個3~5題,最後還能自豪地說我一開始作業都沒什麼動,最後還不是如期交件(誤