【深智書摘】AI 2.0 - 5年前出現的TF接班人—JAX—重磅出世

更新於 發佈於 閱讀時間約 5 分鐘
在AI已經全民運動的年代,Google還是希望有一個更小巧精美的深度學習套件讓大家都能快速上手──JAX就這麼誕生了。
在台灣,本書可說是領先群雄的第一本JAX手冊。不管你是Tensorflow或PyTorch的使用者,都可以試著從MNIST開始。當你發現JAX的程式碼行數是Tensorflow的1/10、PyTorch的1/3,不僅速度更快,程式還更容易理解、更加「Pythnoic」。現在,你真的可以放心的進入JAX的世界,當你上手之後,不論是CNN、RNN、NLP或是GAN,全部可以又快又好又清楚地做出來。

JAX是什麼?】

「工欲善其事,必先利其器」。人工智慧或其核心理論深度學習也一樣。任何一個好的成果實作並在將來發揮其巨大作用,都需要一個能夠將其實作並應用的基本框架工具。JAX 是機器學習框架領域的新生力量,它具有更快的高階微分計算方法,可以採用先編譯後執行的模式,突破了已有深度學習框架的局限性,同時具有更好的硬體支援,甚至將來可能會成為Google 的主要科學計算深度學習函數庫。
JAX 官方文件的解釋是:「JAX 是CPU、GPU 和TPU 上的NumPy,具有出色的自動差異化功能,可用於高性能機器學習研究。」就像JAX 官方文件解釋的那樣,最簡單的JAX 是加速器支持的NumPy,它具有一些便利的功能,具有一定靈活性,可用於常見的機器學習操作。

【JAX與XLA】

在全面講解JAX 之前先介紹一下XLA。簡單來說,XLA 是將JAX轉化為加速器支持操作的中堅力量。XLA 的全稱是Accelerated Linear Algebra,即加速線性代數。身為深度學習編譯器,其長期以來作為Google 在深度學習領域的重要特性被開發,歷時至今已經超過兩年,特別是作為TensorFlow 2.0 背後支持力量之一,XLA 也終於從試驗特性變成了預設打開的特性。
JAX 可以自動微分本機Python 和NumPy 程式。它可以透過Python的大部分功能(包括迴圈、if、遞迴和閉包)進行微分,甚至可以採用衍生類別的衍生類別。它支援反向模式和正向模式微分,並且兩者可以以任意順序組成。
JAX 的新功能是使用XLA 在諸如GPU 和TPU 的加速器上編譯和執行NumPy 程式。預設情況下,編譯是在後台進行的,而函數庫呼叫將得到即時的編譯和執行。但是,JAX 允許使用單功能API 將Python 函數編譯為XLA 最佳化的核心。編譯和自動微分可以任意組合,因此我們無需離開Python 即可表達複雜的演算法並獲得最佳性能。

【JAX NumPy】

JAX 在應用上是想取代NumPy 成為下一代標準運算函數庫。眾所皆知,NumPy 提供了一個功能強大的數字處理API。JAX 吸取NumPy 的優點並使之成為自己框架的部分,同時這也能在不改變使用者使用習慣的基礎上方便使用者快速掌握JAX。
在一定程度上,NumPy 的API 可以無縫平移到JAX 中使用,可以說JAX API 緊接NumPy 的API。然而還是有一些重要的區別的。最重要的區別就是JAX 是被設計為函數式的,就像函數式程式設計一樣(例如Scala 語言)。這背後的原因是JAX 支援的程式轉換類型在函數式程式中更可行。

【用JAX實作GAN生成對抗網路】

GAN 是一種生成式的對抗網路。具體來說,就是透過對抗的方式去學習資料分佈的生成式模型。所謂的對抗,指的是生成網路和判別網路的互相對抗。生成網路盡可能生成逼真樣本,判別網路則盡可能去判別該樣本是真實樣本還是生成的假樣本。
  • 判別器:學習不同類別和標籤之間的區分界限。
  • 生成器:學習標籤中某一類的機率分佈進行建模。
判別器中的判別演算法能夠判別這幅畫是不是由真正的畫家完成的。
標籤被定義為y,而特徵向量被定義為x,那麼判別器的判定公式就是:
discriminator = p( y | x)
生成器的做法恰恰相反,它不關心向量是什麼形式和內容,只關心給定標籤資訊,嘗試由給定的標籤內容去生成特徵,這也和人類思考的過程相類似。
正如其他一些具有非常大研究價值和潛力的學科一樣,GAN 的發展也越來越受到關注,對其的研究也越深入。GAN 採用簡單的生成與判別關係,在大量重複學習運算之後,可能為行業發展帶來十分巨大的想像力。從基本原理上看,GAN 可以透過不斷地自我判別來推導出更真實、更符合訓練目的的生成樣本。這就給圖片、視訊等領域帶來了極大的想像空間。
--
本書深度解說最新人工智慧套件JAX的使用。從基本概念開始談起,在Windows環境下架設WSL以方便使用GPU,而不需要全新從Linux安裝。
人工智慧時代的來臨造就了Keras的大流行,你可以開始使用JAX連貫所有技能,習得更多元的機器學習技能。
--
本文取自深智數位出版之〈Tensorflow 接班王者:Google JAX 深度學習又快又強大〉
即將進入廣告,捲動後可繼續閱讀
為什麼會看到廣告
avatar-img
9會員
25內容數
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
深智數位的沙龍 的其他內容
2306 WordPress可以做到的,不僅僅是SEO,它還能夠整合Facebook、Instagram、廣告投放,將社群行銷的效益發揮到最大。 同樣是架設網站,為什麼不選擇一個投資報酬率最大的網站呢?
在CPU世界,大型商業機構掌握了處理器的設計,使得我們也必須屈從於封閉式的CPU架構。這也是為什麼目前個人電腦只有AMD和Intel兩家可以選擇。然而在RISC-V的出現,我們終於嗅到了CPU世界的自由氣息。
馬克•庫班(NBA獨行俠隊老闆,億萬富翁)說過:「人工智慧、深度學習和機器學習,不論你現在是否能夠理解這些概念,你都應該學習。否則三年內,你就會像被滅絕的恐龍一樣被社會淘汰。現在不開始,以後就來不及了。」
人們透過機器學習(machine learning),試著讓電腦能夠從大量資料中學習成長,不僅可以運用在生活各方面的功能提升,甚至還能透過這些既有的資料,起到鑑往知來的效果,處在當今資訊爆炸的時代,正是你開始學機器學習的最好時機!
Qt是軟體開發領域中非常著名的C++視覺化開發平台,能夠為應用程式開發者提供建立專業圖形化使用者介面所需的所有功能。QT有很完整的硬體、作業系統、視窗元件的處理,它是完全物件導向的,很容易擴充,並且可應用於元件程式設計,也是目前流行的Linux 桌面環境KDE 的基礎。
正所謂「套件」如其名,Pandas 運算套件在資料處理領域的受歡迎程度完全可與善於賣萌的大熊貓相媲美。當然,Pandas 的名稱其實來自經濟學術語—面板資料 (panel data)。 眾所皆知,金融領域存在巨量的資料處理與分析,而Pandas 運算套件就是當時就職於AQR Capi
2306 WordPress可以做到的,不僅僅是SEO,它還能夠整合Facebook、Instagram、廣告投放,將社群行銷的效益發揮到最大。 同樣是架設網站,為什麼不選擇一個投資報酬率最大的網站呢?
在CPU世界,大型商業機構掌握了處理器的設計,使得我們也必須屈從於封閉式的CPU架構。這也是為什麼目前個人電腦只有AMD和Intel兩家可以選擇。然而在RISC-V的出現,我們終於嗅到了CPU世界的自由氣息。
馬克•庫班(NBA獨行俠隊老闆,億萬富翁)說過:「人工智慧、深度學習和機器學習,不論你現在是否能夠理解這些概念,你都應該學習。否則三年內,你就會像被滅絕的恐龍一樣被社會淘汰。現在不開始,以後就來不及了。」
人們透過機器學習(machine learning),試著讓電腦能夠從大量資料中學習成長,不僅可以運用在生活各方面的功能提升,甚至還能透過這些既有的資料,起到鑑往知來的效果,處在當今資訊爆炸的時代,正是你開始學機器學習的最好時機!
Qt是軟體開發領域中非常著名的C++視覺化開發平台,能夠為應用程式開發者提供建立專業圖形化使用者介面所需的所有功能。QT有很完整的硬體、作業系統、視窗元件的處理,它是完全物件導向的,很容易擴充,並且可應用於元件程式設計,也是目前流行的Linux 桌面環境KDE 的基礎。
正所謂「套件」如其名,Pandas 運算套件在資料處理領域的受歡迎程度完全可與善於賣萌的大熊貓相媲美。當然,Pandas 的名稱其實來自經濟學術語—面板資料 (panel data)。 眾所皆知,金融領域存在巨量的資料處理與分析,而Pandas 運算套件就是當時就職於AQR Capi
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Google Brain 開發了 Tensor2Tensor(T2T),讓深度學習開發變得更加容易,T2T 是 TensorFlow 的擴展,包含深度學習模型庫,其中包
Thumbnail
呈上篇介紹如何訓練模型,此篇就主要介紹如何利用訓練好的模型來生成圖片 [深度學習][Python]DCGAN訓練生成手寫阿拉伯數字_生成篇 生成的結果 生成的圖片大小會根據,當初設置的生成器輸出大小來決定,當你使用生成對抗網絡(GAN)生成圖像時,生成器模型的最後一層通常會決定生成圖
Thumbnail
本文參考TensorFlow官網Deep Convolutional Generative Adversarial Network的程式碼來加以實作說明。 示範如何使用深度卷積生成對抗網路(DCGAN) 生成手寫數位影像。
Thumbnail
本文主要介紹,如何利用GAN生成對抗網路來訓練生成圖片。 利用tensorflow,中的keras來建立生成器及鑑別器互相競爭訓練,最後利用訓練好的生成器來生成圖片。 GAN生成對抗網路的介紹 它由生成網路(Generator Network)和鑑別網路(Discriminator Netwo
隨著全球數位化浪潮的推進,企業正面臨著前所未有的挑戰和機遇。數位轉型已成為企業保持競爭力的關鍵策略。在這個過程中,平台即服務(PaaS)作為一種強大的雲端解決方案,正在扮演著不可或缺的角色。本文將探討PaaS在數位轉型中的重要作用,並說明其如何幫助企業實現數位化目標。 簡化開發與部署 Paa
Thumbnail
珍·卡拉漢站在新時代的邊緣,她是一位著名的技術專家,以在人工智能領域的突破性工作而聞名。與大多數人不同,珍不僅僅將人工智能視為一種工具,而是人類創造力和倫理的延伸。她最新的項目,名為「Lumina」,正是這一信念的見證——一個不僅僅是學習,更能理解和同情的高級人工智能。
Thumbnail
這篇文章探討了生成式對抗網路中機率分佈的使用與相關的訓練方式,包括Generator不同的點、Distriminator的訓練過程、生成圖片的條件設定等。此外,也提到了GAN訓練的困難與解決方式以及不同的learning方式。文章內容豐富且詳細,涵蓋了GAN的各個相關面向。
Thumbnail
生成式AI(Generative AI)是近年來人工智慧領域中備受矚目的技術之一。它以機器學習為基礎,通過學習大量數據中的模式和關係,能夠生成各種新的內容,涵蓋文字、圖像、音訊等多個領域。本文將深入探討生成式AI的原理、優缺點以及應用範疇。
Thumbnail
生成式人工智慧(AI)已成為當前科技領域的一大熱點,其能力不僅限於模擬人類智能,更能在多種非傳統計算任務中創造前所未有的內容。這篇文章將深入探討生成式AI的理論基礎、實際應用、代碼實踐,以及其商業應用、工具和公司等方面,提供一個全面的視角來了解這一迅速發展的領域。
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Google Brain 開發了 Tensor2Tensor(T2T),讓深度學習開發變得更加容易,T2T 是 TensorFlow 的擴展,包含深度學習模型庫,其中包
Thumbnail
呈上篇介紹如何訓練模型,此篇就主要介紹如何利用訓練好的模型來生成圖片 [深度學習][Python]DCGAN訓練生成手寫阿拉伯數字_生成篇 生成的結果 生成的圖片大小會根據,當初設置的生成器輸出大小來決定,當你使用生成對抗網絡(GAN)生成圖像時,生成器模型的最後一層通常會決定生成圖
Thumbnail
本文參考TensorFlow官網Deep Convolutional Generative Adversarial Network的程式碼來加以實作說明。 示範如何使用深度卷積生成對抗網路(DCGAN) 生成手寫數位影像。
Thumbnail
本文主要介紹,如何利用GAN生成對抗網路來訓練生成圖片。 利用tensorflow,中的keras來建立生成器及鑑別器互相競爭訓練,最後利用訓練好的生成器來生成圖片。 GAN生成對抗網路的介紹 它由生成網路(Generator Network)和鑑別網路(Discriminator Netwo
隨著全球數位化浪潮的推進,企業正面臨著前所未有的挑戰和機遇。數位轉型已成為企業保持競爭力的關鍵策略。在這個過程中,平台即服務(PaaS)作為一種強大的雲端解決方案,正在扮演著不可或缺的角色。本文將探討PaaS在數位轉型中的重要作用,並說明其如何幫助企業實現數位化目標。 簡化開發與部署 Paa
Thumbnail
珍·卡拉漢站在新時代的邊緣,她是一位著名的技術專家,以在人工智能領域的突破性工作而聞名。與大多數人不同,珍不僅僅將人工智能視為一種工具,而是人類創造力和倫理的延伸。她最新的項目,名為「Lumina」,正是這一信念的見證——一個不僅僅是學習,更能理解和同情的高級人工智能。
Thumbnail
這篇文章探討了生成式對抗網路中機率分佈的使用與相關的訓練方式,包括Generator不同的點、Distriminator的訓練過程、生成圖片的條件設定等。此外,也提到了GAN訓練的困難與解決方式以及不同的learning方式。文章內容豐富且詳細,涵蓋了GAN的各個相關面向。
Thumbnail
生成式AI(Generative AI)是近年來人工智慧領域中備受矚目的技術之一。它以機器學習為基礎,通過學習大量數據中的模式和關係,能夠生成各種新的內容,涵蓋文字、圖像、音訊等多個領域。本文將深入探討生成式AI的原理、優缺點以及應用範疇。
Thumbnail
生成式人工智慧(AI)已成為當前科技領域的一大熱點,其能力不僅限於模擬人類智能,更能在多種非傳統計算任務中創造前所未有的內容。這篇文章將深入探討生成式AI的理論基礎、實際應用、代碼實踐,以及其商業應用、工具和公司等方面,提供一個全面的視角來了解這一迅速發展的領域。