我所參加的這門課程是由清華大學主辦的"產業新尖兵:金融科技FinTech人才養成班 (第二期)"。
寫這篇心得與回顧,大致花了幾週的時間零零散散的拼湊起來,一方面是希望自己能撈回一點記憶,這段經歷個人覺得很珍貴,另一方面,在開班時的人數好像在開班的門檻邊緣。我覺得是網路上有詳細分享內容的資訊很稀少,想認識這門課的人也無從認識起。當然我想有一個可能是因為開課在清華大學,班上有大概50%以上的人都是搬來新竹短租(租金會比較貴或比較難找),有重重阻力,所以報名人數沒有我原先預期的高,但我覺得是值得的。
但令我覺得遺憾的是,我覺得教授各個身懷絕技,我自己卻真心覺得力不從心,無法全部吸收,很多資訊變成只是聽過,然後有個概念,沒有辦法真正去掌握到其中精隨,當然有一部分原因也是時間真的過短,比如,助教在就只能在短短幾堂課裡演示 machine learning,也知道我們不可能真正學會這項技能。
未來如果還有機會開班,有這類課程,有興趣的可以多把握~
以下 文長慎入
以上是我有印象的課程的簡評,接下來我會逐一詳細介紹內容、我的心得等等,但是是用比較隨興的方式書寫。有些課程因為壓在專題發表前後,我不是很感興趣或沒有什麼特別印象的就沒有列入,還請讀者見諒!!
一天的上課分上午及下午,上下午各3小時,一天共6小時
上課時間是2022.10.24-2023.01.10,不過我事前就要先準備離職、辦理一些申請手續、找房子短租等等,課後要搬回台北,實際我的時間安排上差不多就是2022年10月初開始,到2023年1月底,然後2月就準備過年啦~
由於主辦教授本身由於傑出學生眾多,也很積極接觸業界,所以有些講師是有業界背景,內容也很多都是很新的趨勢,這點我覺得蠻加分的。
以下,漫長的課程詳解開始啦~
∎程度:輕鬆、豐富,偏科普
∎時數:3
業界的講師,介紹圖形人工智慧 (graph computer science)
講義內容
藉由圖靈測試區別弱人工智慧、強人工智慧,資訊科技的演進(1946真空管發明至今,其中1990 WWW、1998 Google、2004 FB YT 、2016 Alpha Go)、介紹機器學習是甚麼、介紹Alpha Go演進、簡介Graph、AI在金融領域的應用(前台、中後台、風控)、應用Graph找出詐欺者的實例、銀行間加密共享Data的未來、電腦領域約8年一個世代演進(需要不斷接觸新知)
補充說明
∎程度:硬
∎時數:12
教學內容就是很硬很硬的數學,小弟我大學時有修過微積分,前面還跟得上,但到後面真的會不曉得自己是誰...(大概一個上午就是我以前1-2學期的課程)。講師是很會教課的講師,可以把較難的部分用較簡單的概念來表達,但還是建議在上課之前先把內容查一查,先有基本認識,不然真正上課時一定跟不上。有部分內容在大學時有接觸,彷彿回到大一那種微積分地獄的感覺。如果要更進一步深入學習,講師有推薦交大開放式課程的財務數學導論。
講義內容
(上課到後期心得:數學最不會背叛了,不會就是不會~😂😂)
∎程度:玄
∎時數:36
講義內容
講義就是授課內容,都是全英文,教授在專有名詞上也都是講英文,毫無這方面基礎的我真的無法吸收。除了有機器學習或程式背景的同學可能比較有辦法跟上或理解,其他人應該都差不多,就當作多認識一個機器學習領域,後續若要進修真的還是要靠自學。
其中有12hr是由助教展示用python寫 AI machine learning的code,一些分群的案例。雖然助教也想一步步帶我們弄懂,但時間實在太緊,所以就變成展示。學python還是要靠自學。
∎程度:難以言喻
∎時數:54
這門課的比重大概是30%上課、70%報告,而這70%的報告會在中、後期占用許多課後時間。教授是這個金融科技般的主辦教授之一,教授本身有出書,有給我們一人一本,並要求分組報告書中的內容,每一組負責一個章節,每一組依照頁數多寡人數不同,自己組隊挑選題目。
上課的內容就是簡介Fintech、機器人理財、ETF、簡介新科學應用(AIOT、資料科學、機器學習、深度學習等等)、金融工程簡介(衍生性金融商品、期貨、選擇權、二元樹模型、B-S model)。比較像在統整複習其他老師的內容,沒有很深入的去講解,但該包含的內容都有帶到(真的要很深入,我相信以我們的實力我們應該也會直接投降...)。
報告的部分,有以下幾項:
教授人很nice,有任何問題都可以跟教授請教,而且教授真的很多優秀的學生在業界。教授也樂於跟我們分享業界的情況,有時也會開小班會,大家時不時的互相交流分享,教授偶爾也會請大家甜點飲料,就有點像國高中班導師的那種感覺。
∎程度:紮實
∎時數:6
講義內容
授課時間只有1天,但內容超多,講師常會因為時間不足,很多知識點無法延伸下去講,就趕緊切下一個章節。一看就知道講師背景超級強悍,滿滿的實務背景。有的內容是出自於書籍(例如:創新DNA出自於"創金DNA5個技巧簡單學----克里斯汀生"),課程內容是濃縮濃縮再濃縮,講師也知道我們不可能全盤吸收,每一項都是值得1千、1萬個小時學習的專業,講師只是讓我們多增加各領域的概念。例如講師有提到,蘋果公司的各項專利設計是有一個布局在。當公司大到一定規模時,專利成敗甚至會左右一間公司的命運(但是講師沒有時間仔細去講蘋果的專利設計是如何布局,只是讓我們有個概念)。
∎程度:輕鬆,但內容其實很廣
∎時數:27
講師曾經是業界主管,也參與過國際聚會、創投圈,但人很和善、隨和,說話也比較緩慢(不曉得為什麼看著講師說話會有一種年長的無尾熊在講課的既視感)。講師喜歡我們分組討論,會在課程中穿插非常多小問題讓我們分組討論,再一組一組報告。有時候直的一組,有時候橫的一組,或跳號,或分區塊,總之看講師當下的靈感隨機分組。這堂課比較像是科普。
講義內容
Fintech、區塊鏈在金融界的應用、DeFi(去中心化金融, Decentralized Finance) 與NFT(非同質性代幣,Non-Fungible Token)、DLT(分散式賬本技術)、比特幣(緣起、分散式帳本、價格、點對點去中心化、丟失的幣、時間戳記、最長鏈勝出、算力、篡改難度、耗電問題、礦工...)、貨幣數位化(1990年代有人提出數位化美金但最終失敗)、加密技術(SHA256、數位金鑰)、POW、POS、共識機制、以太幣、CDBC(央行數位貨幣)、駭客事件、智能合約、碳權、淨零碳排....etc.
我記得最後一天的課程的分組討論,由於課程中有介紹CheatGPT,結果每一組大家都用CheatGPT的答案 。😂😂
∎程度:輕鬆、科普
∎時數:21
我記得這位講師是某教授的助教,上課較輕鬆,且鼓勵大家多學習新知。會用較好懂的方式講解機器學習的概念,要深入學習,還是推薦我們自己去買書來K。
基本上是簡介、科普的課程。實作模擬挖礦的部分,在環境設定時有比較花時間。講師說我們這班有幾位是用MacBook,系統不一樣(比較難搞),上一屆的筆電都只有Windows,說我們這一屆比較有錢。 😂😂
講義內容
區塊鏈、AI、機器學習、K近鄰、隨機森林、K均值、DNN、CNN、GAN、以太坊、閃電網路、Dapp、Defi、NFT、實作(模擬挖礦)
∎程度:內容新、廣、偏深
∎時數:12
講師本身背景是與軟體科技業、區塊鏈領域相關,也在DeFi、Fintech領域的團隊有許多的耕耘,教學的內容大多偏重在區塊鏈(畢竟是區塊鏈背景的講師),課堂沒有作業,但講的內容很多且很新。可能因為教學就是很單向的講述,比較難有太多互動,後來講師就請學生課後提問題給助教,上課時再一一回答。
BTW,2022是FED啟動升息循環的年度,幣圈暴雷的暴雷,穩定幣暴斃的暴斃,基本上就是倒一片,但講師仍是對幣圈充滿期待就是了。(太未來的東西還是要小心R~)
講義內容
∎程度:輕鬆
∎時數:36
一開始會說明有關於管理學面向,比如商業模式、創新模式、產品生命週期、開放式創新,之後的課程重心會放在案例分享。教授會準備許多案例,我印象中這些案例大多都是教授自己的學生的論文,教授會指派每一組負責一份案例,然後由每一組同學來報告,最後全班大家來投票決定名次,看誰報告的最好。在課程結束時,教授有分享他指導的學生在創新創業方面的其他各個案例。
同學報告的案例中,我比較有印象的是商業模式九宮格、顧客價值屋模型。
我負責的告報內容是某間傳產公司設立新公司執行新領域的創業嘗試(生技領域),由原公司持有股份,先打造穩定現金流,然後再投資,從外部引進新技術等等,若創業成功,原公司也會受惠。我記得我有將持股結構、獲利挹注方向大致畫出來,教授還蠻意外,一般都只有文字敘述,他說第一次有人把他這個東西畫出來。(我記得教授有問,關於這個題目,我認為成功的關鍵為何?我說,人脈是關鍵,如果沒有key man,這間傳產公司很難有辦法去開創生技產業)
∎程度:硬
∎時數:24
講義內容
敘述統計、機率論、統計估計、假設檢定、比較兩母體之推論統計、簡單迴歸、複迴歸,就真的是統計學,以下常偶爾會聽過的專有名詞都會介紹,如果有興趣可以自行Google:常態分配、抽樣分配、中央極限定理、區間估計(大樣本/小樣本)、信賴區間、t分配、卡方分配、假設檢定(大樣本/小樣本)、P-value、臨界值法、Z值法、簡單線性迴歸模型、相關分析(相關係數)、複回歸模型(包括複回歸模型的估計、統計推論)、複相關分析
我大學時並沒有修過統計,我是盡可能去跟上,但真的...很數學。老師為了要讓學生有一點參與感(不然底下會一片安靜...),就會在課堂上多給習題練習。基本上老師也不考計算,而是讓我們知道簡單的推導與概念以後用Excel求出答案。不過一下子麼多的內容,有點暈...,但老師也沒辦法再講得更多更深或更慢,因為時間並不那麼充裕,只能看學生能吸收多少算多少,跟數學課一樣是偏硬的課。
老師的口頭禪是:可惡啊~~~(每當算到一半某個地方出現error的時候)
∎程度:清楚、重點式講解
∎時數:18
教學內容是傳統的財務方法。講義是英文的,內容很多,教授並沒有全部細講,僅挑比較重要的講,大概重點在DCF、NPV、IRR、股利增長模型(高登模型),另外還有介紹一些文獻、期刊。
感覺得出來教授講解的語速有放慢,有點聲如洪鐘,可能有些內容太理論,底下氛圍也有一點低糜,有印象的是教授有一次說到年輕時要買一些資產,不要只會追星買手搖飲,拿回家就只會頭暈暈好快樂。我記得我還有私底下懟說什麼頭暈暈好快樂是買到什麼藍色小藥丸嗎?😂
為了要讓學生可以跟上,講解推導時也不會很快,但講義有一些內容就會跳過。最後教授有提醒,這些股價估值模型在套用在個股時要經過一段時間的測試,畢竟每一檔個股的成長率並不相同,適用哪一種模型也不一定,且股市本就有一定的不確定性,所以不要看著講義就想說:太好了回家打開印鈔機!!
(但我現在看了一些高手的觀點是認為,模型只是參考用,用來在每次的財報或季報公布時,用以確認現在該公司是走在1️⃣預期上修循環、2️⃣預期下修循環、3️⃣預期之外,看是哪一個方向。如果是出現 3️⃣預期之外,那就表示公司或產品的adoption curve、商業模式出現重大轉變,需要重新評估。484又開始覺得怎麼出現新東西了呢好煩~小弟我也是最近才聽到這些名詞~😂😂😂)
我有跟教授討論到他當時有操作日元匯率然後被停損出場。可以參考當時(2022年Q4)的新聞日本央行縮小貨幣寬鬆,長期利率上限提至0.5%、看懂黑田東彥的豪賭 一文了解日本央行「收益率曲線管制」。主要就是因為FED在暴力升息,日本通膨CPI又走高,最終日央在利率曲線控制上決定採取偏向緊縮的貨幣政策,導致日元升值。
總之有在關注一些新聞的話,是可以跟教授稍微聊一下,但如果沒有關注這些就聊不起來。😂
講義內容
資產負債表(income statement損益表、負債、流動性、GAAP會計準則、淨營運資本NWC...)、DCF折現法(future value/present value、利率)、NPV淨現值法、IRR內部報酬率、債券、票券利率(coupon rate)、債券的利率風險(名目利率對券價格的影響、存續期間、再投資風險)、到期利率(Yield to maturity)、當期利率(Current Yield)、零息債券(Zero Coupon Bonds)、政府公債、債券市場、通膨與利率、實質利率與名目利率、通膨掛勾債券、費雪效果、PE ratio、股利增長模型及其變形的增長模型、三因子模型。
論文、期刊介紹的主題:事件研究法(事件與股價的關係,經濟事件對公司價值的影響、股價有價格發現功能)、共同基金長期業績表現、行為財務學在台灣市場的研究、資本預算決策(財務可行性評估)、三因子模型
∎程度:(?) (陰沉連貫式問答思辨教學法)
∎時數:18
這堂課的教授很有特色,教課會有一種暗黑的感覺,講到金融歷史就會帶到一些陰謀論色彩,而教授的內容,從講義來看是很純經濟理論的東西(大概85%經濟學,15%是套利模型、選擇權概述),但教授並不完全按照講義講課,大部分內容會跳過(應該是怕講太理論我們很難消化,有興趣的同學請回家自己讀😂)。
比較有印象的是,教授會拋出問題,然後回答問題,再拋出另一個問題,用比較生活化的例子去講,讓學生去思考。但可能因為教授有點陰沉(會批判很多有問題的點,具體我也不曉得如何舉例),到後來...因為我坐比較前面,坐後面的同學基本上沒甚麼人發聲,然後教授就會直勾勾地看著我問話,我就只好回答教授的問題。😂😂
不過我覺得在經濟學方面有比較長期、深入著墨的也是這位教授,是有經歷過19XX年的到現在的行情的那種古老的感覺,小弟 我有撰寫另一篇筆記-霍華馬克斯的備忘錄-2024.01.09,大概就是有一點這類的feel(有興趣的就加減參考下啦~)。教授還說他會用Email與國外一些金融專業人士交流一些選擇權定價風險估算之類的東西,聽著感覺蠻神奇的。以下我從我薄弱的記憶中提出幾個比較有印象的授課內容與例子,表達的如果有偏差還請包涵。
後來的課程有一部份有提到期貨定價的二元樹模型,就是簡述一個期貨選擇權如何定價的概念。
講義內容
講義(幾乎都是英文)的內容,有蠻多艱澀的傳統經濟學理論內容。我列舉幾個關鍵字或敘述,有興趣者自行Google:
經濟學是研究社會如何管理稀缺資源、家庭與經濟體的對照、經濟學原理(人的決定與取捨、人性、人對激勵的反應、貿易與交易、市場、政府、生活水平與國家生產力、通膨與失業)、三個原則(機會成本、相對價格、權力)、效率與公平、微觀經濟學側重描述、管理經濟學側重規範、在市場上的 Adam Smith (經濟發展 = 利己主義 + 看不見的手;誘導合作,非達爾文競爭、市場拓展、專業分工 )、Ronald Coase’s 牛肉與小麥問題、企業理論(The Theory of the Firm)、企業的現金流/收益/市場價值、管理目標
國家收入和生活成本、微觀/宏觀經濟學、GDP、美國GDP、實質/名目GDP、通膨與生活成本、CPI、GDP deflator
貨幣系統、美國金融機構(金融市場/金融中介)、國民/公共儲蓄、盈餘/赤字、利率/貸款、稅法與儲蓄供需曲線、美國政府債務政策的影響、貨幣(本質/記帳單位/流動性)
聯邦儲備系統(成立/理事會/地區聯邦銀行/公開市場委員會FOMC)、貨幣政策、FED的職能、 公開市場操作(買賣公債、銀行準備金要求、銀行重貼現率控制)、銀行和貨幣供給、銀行資產負債表、銀行系統/貨幣乘數、結語:FED的貨幣供給控制並不精確(這邊我想提一下,就我所知,美國從很久以前,在利率市場已經變得很有效率以後,FED就已經放棄以貨幣總量為控制目標,而是改以預期管理為其方針,所以這個結語我還是認同的)
通貨膨脹的經典理論、物價水準、惡性通膨、通貨緊縮、貨幣總量/貨幣價值、貨幣總量增長導致通膨(這裡我有跟教授討論到並不全然如此,非美貨幣的確會有這問題,美元就不一定,而且也要看錢是釋放到哪裡,後面就延伸到美國財政部長 John Connally 很著名的一句話:It may be our currency, but it's your problem.)、monetary neutrality(貨幣中性)、貨幣流通速度、貨幣流通速度方程式(費雪的交易方程式)、惡性通膨的個案研究、費雪效果、經濟實質變量與貨幣變量(Hume與其他經濟學家觀點)、通膨的代價、通膨相關的各種問題
現在價值與未來價值、折現法
固定收益、債券風險、債券發行機構、一級市場與二級市場、外匯市場、金融機構概覽、金融機構類型、國債類型(Bills/notes/bonds/TIPS)、國庫券拍賣流程、聯邦基金簡介(FED Fund rate / 超額準備金 / 附買回協議Repo )、商業本票 Commercial Paper、可轉讓定期存單 NCD : Negotiable Certificates of Deposits、銀行承兌匯票 Banker's Acceptances、國庫券一/二級市場、市政債券 Munis、公司債(抵押債 / 次級債券 / 可贖回債 / 股票權證 / 可轉換債券)、公司債一/二級市場、債券評級(Moodys / S&P)、債券市場參與者、非美債券(歐債、主權債)
∎程度:紮實、案例&故事
∎時數:12
原先我看到這堂課時,會以為就是簡單跟我們講求職時需要注意些什麼,履歷該注意些甚麼,但講師的講課內容超乎我的預期。我當天還PO文說今天的講師很棒,邏輯清晰縝密,節奏清楚,然後內容再延伸...等等。然後有位同學當天在面試,知道這門課講得很棒,面試完趕緊回來聽課。 😂
在第一天課程結束以後,講師讓同學從人力銀行自己找一個職缺,針對此職缺撰寫一篇個人履歷,在隔週上課時可以跟講師討論,講師會協助同學分析此份履歷有那些缺失或可以補強之處,當作課後作業。不過因為距離專題發表時間有點近,講師不強制要求,所以也並不是每位同學都有準備履歷就是了。
講師本身是資深HR背景,故對求職生涯情況相當熟悉。講義本身就是在談求職相關的方方面面,這部分我就不分享了(網路上蠻多相關的資訊)。但除了講義以外,講師延伸了許多故事,還提到很多以前我沒想過或不知道的點,我列舉幾個例子:
∎程度:紮實
∎時數:12
課程安排兩天,剛好橫跨就業媒合會,媒合會前1天(都在做專題),媒合會後1天(想放鬆),是大家最沒有心力上課的時期。是年輕的老師,但語速非常非常非常平穩,搭配陰陰的天...很催眠,但我翻了一下講義發現內容超豐富,於是就認真起來了,課後也積極的找老師問問題。 😂😂
因為講義有一些做相關性的分析,我看著不是很清楚,所以就有向老師請教,才知道原來老師本身是做策略開發,而我問的這個部分是一個策略的案例。
比如,用以下兩項資產做相關性分析
VGLT (Long term treasury / 存續期間17.9年)----名目報酬 (導數為名目利率)
LTPZ (Long term TIPS / 存續期間21.74年)-------實質報酬 (導數為實質利率)
分析結果為兩者有顯著關係,證明LTPZ此項資產雖以實質報酬(扣除通膨影響)為其設計方向,但本質上仍然會與長期名目利率資產(VGLT)有相關
註:名目利率 (大約) = 實質利率 + 預期通膨率
而這項案例就是將許多資產進行一連串相關性分析以後,設計一項偏中長期的策略(當然最後有附上當時的策略回測結果)。老師說她們是被要求策略本身要具有經濟意涵,也就是要解釋得通。這部分是看老闆,有的老闆並不要求解釋能力,只要策略回測結果OK,無法解釋也過關。(這就很像現在的AI策略開發,運用AI依據歷史數據,在經過多層分析、回測後做出的策略,會像一個黑盒子,設計者無法得知AI是基於什麼理由買進賣出。而就同學提供的資訊,在AI策略開發這一塊,已經發展成很像軍備競賽,用算力在跑策略開發,好像在比誰的算力強。 😂)
另外,老師有說她當初也是畢業以後就花了兩個月,先把基礎證照都先考起來,然後也推薦我們如果各銀行有MA職缺,都可以投投看,這樣履歷會進到公司內部,不論有沒有應徵上都沒有關係。
授課內容共有三部分,風險管理、投資組合管理與固定收益、時間序列。基本上有30-50%都是數學,而且是看不懂的那種 XDD,所以主要是大概有get到概念就好,有些部分跟高業考試有重疊。這是有一位同學說的,他正在準備初業、高業考試(超前部屬???)。
這堂課還有一個心得是,策略開發會看到一些跟市場分析不同的觀點,原因是,市場分析比較側重解釋,然而策略開發更側重領先市場。比如,VIX與市場的負相關性。這在市場分析會是一個點,因為可以用VIX飆高同時市場大跌去確認現在市場屬於恐慌氛圍。但是在策略開發方面,VIX飆高與股市大跌通常都在同一天,所以在開發以日資料為單位的策略開發時,VIX就沒辦法作為一個很好的領先指標。
講義內容
這門課最重要的就是期末的專題,本課程的專題會在金融科技II所有報告都結束以後開始,而在前期這麼多報告,同學彼此也會大略知道誰對甚麼有興趣,有交集的、有共同或相近目標的同學組成同一組是最佳的情況。教授會安排一段時間讓同學有想法的,或是已組隊完成的上來台上跟大家介紹idea。我們這一組大家都有相近的想法,所以組隊、敲定組員也非常快,也盡可能的早一點開始進行,但專題的過程有很多曲折(有刪掉許多沒用的嘗試)。我們光是"題目",就改了很多次,邊做邊改,有很多內容做了不滿意的會拿掉,也開了很多次課後小組會議,每當有一個階段性的想法或成果,我們會趕快給教授看,從教授的評價裡面去修改方向或內容。總之,早一點開始,就越有試錯機會,把不夠好的成果或方向拿掉,有較多時間可以改方向或細節。
我記得我們有一次的討論是,因為我們對於題目方向的共識太過一致,為了不要這麼武斷、這麼快下結論,組員提議回家想一天,隔天大家再提出不同的idea。結果隔天我們大家對提出的各種idea進行一連串刪去法,討論到最後,又繞回到原來題目的方向😂😂。
還有一次是,為了讓使用我們平台投資的用戶,能夠對投資充滿信心堅持下去,並且好好地記錄每一筆投資的成功與失敗,進而檢討改進進出場策略,目標是客戶可以自我成長以達到長期盈利,於是發想說,如果有一筆投資是成功的,就出示一個愛心或獎盃或甚麼的獎勵圖示,如果有一筆投資是失敗或虧損的,就放一個可愛的十字架墓碑來表示。這麼做的原因是,現在市場上沒有這種APP,可以做出一點產品差異化,而且也可以用可愛的方式提醒用戶自身所使用的投資策略、方法的成功率。然後我們就有組員問,那萬一用戶一打開APP,結果冒出來的全部都是可愛的墓碑怎麼辦?用戶會不會崩潰?我們全部快笑翻🤣🤣🤣,最終取消這個提議。
專題發表前幾天,我們這組的內容、架構都差不多了,細節反覆檢查修飾(挑出可能的問題並修改),然後大家會多練幾遍,並把時間控制在一定時間內(依教授、助教給的時間),如果超時就再多練練,做好時間控管。我們在前一天還在教室留下來練習跟其他組的同學報告,請其他組的同學提問,各種問題都可以請同學盡量問,越刁鑽越好,就是要為專題發表當天做準備,因為我們不曉得廠商會問甚麼問題。
我還記得我們的商業模式中有對應不同類型的客戶做不同的服務,有一頁"尊榮服務",主要是針對高資產客戶要有一些特定的業務拓展規劃。然後底下就有同學問說,請問"尊榮服務"是多尊榮? 我們整個快笑死,我真的不曉得這種瞎掰的東西要怎麼給說法,我已經笑到回答不出來了😂,但還是有組員很敬業地給了一個說法(厲害厲害👍👍)。
專題發表當天,大家都穿得很正式,也有人西裝皮鞋、淡妝、梳油頭,我是沒有到那麼正式,簡單白襯衫加深色薄毛衣。大概就是當自己要去面試,白襯衫甚麼的乾淨俐落就可以。
我們這次的情況是上午上課,下午專題發表,廠商會在下午到場,報告順序會事先給,然後上午我們基本上是沒甚麼心情聽課,有點小緊張,我還跑到外面練稿。
報告的過程就不細談了,反正就是一組一組在台上發表,讓來賓提問。不過我們雖然蒐集了很多問題,卻在真正專題發表的時候沒什麼被問到,提問沒有想像中的踴躍。有兩三位有給出意見,而有的觀點是我們沒想到的,或是實務上才會碰到的問題,所以我們也無法給甚麼回應(我記得有一位主管有針對我們的某一項商業模式的服務給出法律方面的建議,但這部分因為我們沒有實務經驗,壓根兒沒有考慮到法律層面的問題,就無法回應什麼)。
在專題發表完以後,我們會以個人或以組為單位去找廠商、公司面談。來參與的基本上都是主管,而我個人是印了幾份履歷備用。雖然說是就業媒合會,但比較不像面試那麼拘謹,整體氛圍大概介於面試與聊天中間。
這個班的設立有一部份的期望是就業媒合的成功率,而以我們這一屆來說,我們有同學在專題發表之前就已經面試到工作,但是,我自己感覺,大多數的同學,高機率是會回到原產業,這跟轉換跑道所需的成本有關,不過這也回到,專業、經歷,這些都是不斷堆疊的過程,過去在什麼領域下過功夫,就會在甚麼地方累積出成果,而事後回來看,這門課帶來的最大價值就是知識邊界的拓展、可能性的觸角延伸,但有點慚愧的也是,腦力不足,無法將所有知識都完整的吸收,學海無涯。
在很用力要生出品質好的專題成果的那段時期裡,大家都是以結果為導向,但事後會覺得,過程比結果重要,而且大家彼此沒有利害關係,可以真正意義上的合作,大家各自以往有什麼背景或資源,都很願意彼此分享,有認識到一些共同興趣的朋友,是最好的收穫。
然後,我覺得這門課還是要有幾位會寫程式的人,這是因為其實程式沒辦法在很短的時間內就學會,尤其以這門課又是知識密度超高的情況下更是困難,有幾位會寫程式的人,或是有程式背景的人在這個班,才有辦法將"想像"化為"現實",根本就是專題救星。(我這樣講會不會太直接 XDD)
最後,在撰寫這篇心得回顧的時候,有好多個知識點,我還會覺得...奇怪...這個我們有教嗎?(哎呀看看我這記性) 😂😂😂
關於各種分組報告在這課程中的量,我個人是認為,由於後期還有最重要的專題,所以報告的量是蠻多的,會去擠壓到專題的準備時間。但我並不排斥這幾份報告,因為這些報告分組可以讓同學之間更加認識彼此(尤其當每次的組員都不同時更是如此)。如果將這些報告的時間都往前挪,每週有留一點空白的時間,上課總日期拉長(開課往前挪、專題往後挪),留更多的時間給後面的專題,我覺得會更好,而且前期剛開課的時候大家都是學習動力最強的時候(後期會減弱)。但因為很多堂課的知識密度都非常高,所以報告的量越多, 是會擠壓到同學上課的專注力,所以這又回歸到,在同學來上這門課之前,對於相關領域,本身有多少基礎的積累。
總之,我自己在小班會上給學校的回饋建議我也有提到這一點,就是,如果可以的話,校方可以有一些先修教材,這樣同學會比較容易接軌。但我想這要達成是有一定的難度,所以我這一篇課程回顧,也是給未來如果有機會可以來報名這類課程的同學,課程內容有些部份可以先自行Google一下,前期越有毅力將這些內容做基礎認知或概念的建構,學生越有辦法在很高的知識密度轟炸下去吸收,就越能提升這門課的價值。
最後要感謝這次的主辦單位安排的助教,很多細節都感覺得到用心。
在結訓時我說日後要來搞一篇出師表10倍規格的分享文,我其實沒在開玩笑喔 😂😂
課程的心得與分享大概就到這裡,超級感謝有毅力看完的讀者🙏🙏,給讚👍👍👍👍👍,如果未來清大有機會再開辦這類的課程,有興趣的可以好好把握喔~
PS.
原本想放幾張上課照片,因為我有留存,不過想想還是先不放好了,怕有同學不希望被PO,這一篇就當個單純的課程分享就好~😂😂