AI說書 - 從0開始 - 54

AI說書 - 從0開始 - 54

更新於 發佈於 閱讀時間約 1 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


目前我們已經完成:


現在我們來撰寫 Query、Key、Value 權重矩陣的程式,在原始 Google 於 2017 年釋出的 Attention 論文中,Query、Key、Value 這三個矩陣的維度均為 512 x 64 ,前者對應 Embedding + Positional Encoding 後的維度,現在為了方便説明,我們把它們都調整成 4 x 3。


針對 Query 權重矩陣的程式配置如下:

W_Query = np.array([[1, 0, 1],
[1, 0, 0],
[0, 0, 1],
[0, 1, 1]])


針對 Key 權重矩陣的程式配置如下:

W_Key = np.array([[0, 0, 1],
[1, 1, 0],
[0, 1, 0],
[1, 1, 0]])
avatar-img
Learn AI 不 BI
218會員
575內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言
avatar-img
留言分享你的想法!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 37 到 AI說書 - 從0開始 - 70 ,我們完成書籍:Transformers for Natural Language Proc
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 的重要性已經被公認了,因此在 Hugging Face 中亦有被實作,呼叫方式如下: !pip -q install transformers
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Trainin
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 37 到 AI說書 - 從0開始 - 70 ,我們完成書籍:Transformers for Natural Language Proc
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 的重要性已經被公認了,因此在 Hugging Face 中亦有被實作,呼叫方式如下: !pip -q install transformers
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Trainin