AI說書 - 從0開始 - 71

AI說書 - 從0開始 - 71

更新於 發佈於 閱讀時間約 3 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


AI說書 - 從0開始 - 37AI說書 - 從0開始 - 70 ,我們完成書籍:Transformers for Natural Language Processing and Computer Vision, Denis Rothman, 2024 第二章說明。


以下附上參考項目:

  • Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, 2017, Attention Is All You Need: https://arxiv.org/abs/1706.03762
  • Hugging Face transformer usage: https://huggingface.co/docs/transformers/main/en/ quicktour
  • Tensor2Tensor (T2T) introduction: https://colab.research.google.com/github/tensorflow/ tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb?hl=en
  • Manuel Romero’s notebook with link to explanations by Raimi Karim: https://colab.research. google.com/drive/1rPk3ohrmVclqhH7uQ7qys4oznDdAhpzF
  • Google language research: https://research.google/teams/language/
  • Hugging Face research: https://huggingface.co/transformers/index.html
  • The Annotated Transformer: http://nlp.seas.harvard.edu/2018/04/03/attention.html
  • Jay Alammar, The Illustrated Transformer: http://jalammar.github.io/illustrated- transformer/


以下附上額外閱讀項目:

  • https://blogs.nvidia.com/blog/2022/03/25/what- is-a-transformer-model/
  • https://docs.nvidia.com/deeplearning/ transformer-engine/user-guide/index.html


avatar-img
Learn AI 不 BI
219會員
573內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言
avatar-img
留言分享你的想法!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 的重要性已經被公認了,因此在 Hugging Face 中亦有被實作,呼叫方式如下: !pip -q install transformers
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Trainin
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 仔細看 AI說書 - 從0開始 - 66 中,Decoder 的 Multi-Head Attention 框框,會發現有一條線空接,其實它是有意義的,之所以空接,是因
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 的重要性已經被公認了,因此在 Hugging Face 中亦有被實作,呼叫方式如下: !pip -q install transformers
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Trainin
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 仔細看 AI說書 - 從0開始 - 66 中,Decoder 的 Multi-Head Attention 框框,會發現有一條線空接,其實它是有意義的,之所以空接,是因