AI說書 - 從0開始 - 165 | 訓練自己的 Tokenizer

更新於 發佈於 閱讀時間約 1 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


整理目前手上有的素材:


今天要來訓練自己專屬的 Tokenizer,以下先圖示說明目的,假設我有一個句子「... the tokenizer ...」,那麼經過 Tokenizer 後會變成:

raw-image

當中有個奇怪符號「Ġ」表示空白,接著把上述字元變成它專屬的代碼,如下所示:

raw-image

講完理念之後,我們來實作:

from pathlib import Path
from tokenizers import ByteLevelBPETokenizer
paths = [str(x) for x in Path(".").glob("**/*.txt")]

file_contents = []
for path in paths:
try:
with open(path, 'r', encoding ='utf-8', errors = 'replace') as file:
file_contents.append(file.read())
except Exception as e:
print(f"Error reading {path}: {e}")

text = "\n".join(file_contents)

tokenizer = ByteLevelBPETokenizer()
tokenizer.train_from_iterator([text],
vocab_size = 52000,
min_frequency = 2,
special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>"])
留言
avatar-img
留言分享你的想法!
avatar-img
Learn AI 不 BI
224會員
607內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
Learn AI 不 BI的其他內容
2024/09/25
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 159 | Pretain 模型緣起 到 AI說書 - 從0開始 - 189 | 製作聊天介面,我們完成書籍:Transformers
2024/09/25
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 159 | Pretain 模型緣起 到 AI說書 - 從0開始 - 189 | 製作聊天介面,我們完成書籍:Transformers
2024/09/24
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 180 | RoBERTa 預訓練前言:RoBERTa 預訓練前言 AI說書 - 從0開始 - 181 | 預訓
2024/09/24
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 180 | RoBERTa 預訓練前言:RoBERTa 預訓練前言 AI說書 - 從0開始 - 181 | 預訓
2024/09/24
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 180 | RoBERTa 預訓練前言:RoBERTa 預訓練前言 AI說書 - 從0開始 - 181 | 預訓
Thumbnail
2024/09/24
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 180 | RoBERTa 預訓練前言:RoBERTa 預訓練前言 AI說書 - 從0開始 - 181 | 預訓
Thumbnail
看更多
你可能也想看
Thumbnail
TOMICA第一波推出吉伊卡哇聯名小車車的時候馬上就被搶購一空,一直很扼腕當時沒有趕緊入手。前陣子閒來無事逛蝦皮,突然發現幾家商場都又開始重新上架,價格也都回到正常水準,估計是官方又再補了一批貨,想都沒想就立刻下單! 同文也跟大家分享近期蝦皮購物紀錄、好用推薦、蝦皮分潤計畫的聯盟行銷!
Thumbnail
TOMICA第一波推出吉伊卡哇聯名小車車的時候馬上就被搶購一空,一直很扼腕當時沒有趕緊入手。前陣子閒來無事逛蝦皮,突然發現幾家商場都又開始重新上架,價格也都回到正常水準,估計是官方又再補了一批貨,想都沒想就立刻下單! 同文也跟大家分享近期蝦皮購物紀錄、好用推薦、蝦皮分潤計畫的聯盟行銷!
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 繼 AI說書 - 從0開始 - 82 與 xxx ,我們談論了衡量 AI 模型的方式,那當你訓練的模型比 State-of-the-Art 還要好並想要進行宣稱時,需要
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 繼 AI說書 - 從0開始 - 82 與 xxx ,我們談論了衡量 AI 模型的方式,那當你訓練的模型比 State-of-the-Art 還要好並想要進行宣稱時,需要
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 再度回到 Transformer 架構中的 Encoder 部分,如下圖所示: 我現在手上有的素材如下: Embedding 訓練方式:AI說書 - 從0開始
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 再度回到 Transformer 架構中的 Encoder 部分,如下圖所示: 我現在手上有的素材如下: Embedding 訓練方式:AI說書 - 從0開始
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 42中,見識了 Tokenizer 做的事情了,以下來羅列幾個要點: 它將原始文字轉成小寫 有可能將原始文字再進行切割 通常 T
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 42中,見識了 Tokenizer 做的事情了,以下來羅列幾個要點: 它將原始文字轉成小寫 有可能將原始文字再進行切割 通常 T
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News