AI說書 - 從0開始 - 254 | Attention Head 輸出機率檢視

更新 發佈閱讀 3 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


為了檢視 Attention Head 輸出機率,我們撰寫以下程式:

!pip install transformers
from transformers import BertTokenizer, BertModel

input_text = "The output shows the attention values" #@param {type:"string"}

from transformers import BertTokenizer, BertModel

model_name = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertModel.from_pretrained(model_name, output_attentions = True)
tokens = tokenizer.tokenize(input_text)
input_ids = tokenizer.convert_tokens_to_ids(tokens)

inputs = tokenizer.encode_plus(input_text, return_tensors = 'pt')
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
outputs = model(input_ids, attention_mask = attention_mask)
attentions = outputs.attentions


當中註解如下:

  • input_text這是一個字串變數 (input_text),它被賦值為 The output shows the attention values,這段文字表示變數內的內容
  • #@param {type:"string"}這是 Colab Notebooks 中用來指定變數類型的註釋,在 Google Colab 中使用 #@param 可以讓此變數在筆記本的 UI 界面中顯示為可編輯的字段,{type:"string"} 指定了這個參數應該是一個字符串
留言
avatar-img
留言分享你的想法!
avatar-img
Learn AI 不 BI
246會員
1.0K內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
Learn AI 不 BI的其他內容
2024/12/28
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 247 | 第九章引言 到 AI說書 - 從0開始 - 278 | 模型視覺化極限與人為介入,我們完成書籍:Transformers f
2024/12/28
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 247 | 第九章引言 到 AI說書 - 從0開始 - 278 | 模型視覺化極限與人為介入,我們完成書籍:Transformers f
2024/12/27
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 模型的解釋已經取得了進展,但仍有許多工作要做,有些絆腳石仍然相當具有挑戰性: Embedding Sublayer 基於隨機計算,並添加到複雜
2024/12/27
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 模型的解釋已經取得了進展,但仍有許多工作要做,有些絆腳石仍然相當具有挑戰性: Embedding Sublayer 基於隨機計算,並添加到複雜
2024/12/26
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 275 | OpenAI Transformer 模型之視覺化 及 AI說書 - 從0開始 - 276 | OpenAI Transf
Thumbnail
2024/12/26
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 275 | OpenAI Transformer 模型之視覺化 及 AI說書 - 從0開始 - 276 | OpenAI Transf
Thumbnail
看更多
你可能也想看
Thumbnail
生產力爆發帶來的過剩,會讓過去的「還可以啦」成為最低標準。市場需求對於出類拔萃、獨一無二的需求還是存在,但是對於那些價格高度敏感,或是只需要穩定、便宜、還可以啦的需求端來說,AI 正在迅速取代這部分的供給,中間長尾的服務提供者被 AI 替換。
Thumbnail
生產力爆發帶來的過剩,會讓過去的「還可以啦」成為最低標準。市場需求對於出類拔萃、獨一無二的需求還是存在,但是對於那些價格高度敏感,或是只需要穩定、便宜、還可以啦的需求端來說,AI 正在迅速取代這部分的供給,中間長尾的服務提供者被 AI 替換。
Thumbnail
今年在 Google I/O 有幸看到 Hassabis 本人幾秒,DeepMind 和共同創辦人 Demis Hassabis 的這個題目,也一直都在待寫清單中。 前陣子,在介紹 Founders Fund 時,發現 Demis Hassabis 當初在說服 Peter Thiel 投資 Dee
Thumbnail
今年在 Google I/O 有幸看到 Hassabis 本人幾秒,DeepMind 和共同創辦人 Demis Hassabis 的這個題目,也一直都在待寫清單中。 前陣子,在介紹 Founders Fund 時,發現 Demis Hassabis 當初在說服 Peter Thiel 投資 Dee
Thumbnail
年末總有一種莫名的魔力,讓人特別容易感到孤單。 聖誕節、跨年、緊接著農曆新年……滑開社群,不是甜蜜放閃,就是一群人早早訂好跨年行程。 明明日子算得上順遂,工作穩定無憂,生活也按部就班地往前走着,可總在萬籟俱寂的夜晚,獨自對着空蕩的房間時,心底會悄悄冒出一個念頭:今年,是不是可以不一樣?不再獨自抵
Thumbnail
年末總有一種莫名的魔力,讓人特別容易感到孤單。 聖誕節、跨年、緊接著農曆新年……滑開社群,不是甜蜜放閃,就是一群人早早訂好跨年行程。 明明日子算得上順遂,工作穩定無憂,生活也按部就班地往前走着,可總在萬籟俱寂的夜晚,獨自對着空蕩的房間時,心底會悄悄冒出一個念頭:今年,是不是可以不一樣?不再獨自抵
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers 將逐漸接管大多數複雜的自然語言處理任務,然而,人類的干預仍然是必不可少的,正確的方法是訓練一個 Transformers,實現它,控制輸出,並
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers 將逐漸接管大多數複雜的自然語言處理任務,然而,人類的干預仍然是必不可少的,正確的方法是訓練一個 Transformers,實現它,控制輸出,並
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 271 | 其他解釋 Transformer 模型之方法簡介 中,提到 LIT 視覺化,今天我們來操作一次,首先造訪:https:/
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 271 | 其他解釋 Transformer 模型之方法簡介 中,提到 LIT 視覺化,今天我們來操作一次,首先造訪:https:/
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 271 | 其他解釋 Transformer 模型之方法簡介 中,提到 LIT 視覺化,今天我們來操作一次,首先造訪:https:/
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 271 | 其他解釋 Transformer 模型之方法簡介 中,提到 LIT 視覺化,今天我們來操作一次,首先造訪:https:/
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 269 | 互動式 Transformer 視覺化介面 中,闡述了一項視覺化介面,其例子如下: 在 Transformer 架構中
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 269 | 互動式 Transformer 視覺化介面 中,闡述了一項視覺化介面,其例子如下: 在 Transformer 架構中
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 257 | Attention Head 輸出機率檢視 中,撰寫了程式,試圖視覺化 Attention Head 輸出機率,以下開始
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 257 | Attention Head 輸出機率檢視 中,撰寫了程式,試圖視覺化 Attention Head 輸出機率,以下開始
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 257 | Attention Head 輸出機率檢視 中,撰寫了程式,試圖視覺化 Attention Head 輸出機率,以下開始
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 257 | Attention Head 輸出機率檢視 中,撰寫了程式,試圖視覺化 Attention Head 輸出機率,以下開始
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在 AI說書 - 從0開始 - 255 | Attention Head 輸出機率檢視 中,檢視 Attention Head 的輸出機率,這以數學層面來說就是
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在 AI說書 - 從0開始 - 255 | Attention Head 輸出機率檢視 中,檢視 Attention Head 的輸出機率,這以數學層面來說就是
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 有了 AI說書 - 從0開始 - 254 | Attention Head 輸出機率檢視 的準備,我們可以撰寫以下程式來檢視 Attention Head 的輸出機率:
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 有了 AI說書 - 從0開始 - 254 | Attention Head 輸出機率檢視 的準備,我們可以撰寫以下程式來檢視 Attention Head 的輸出機率:
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如果我們想要獲得 Transformer 的模型觀點,只需要撰寫以下程式碼: model_view(attention, tokens, sentence_b_sta
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如果我們想要獲得 Transformer 的模型觀點,只需要撰寫以下程式碼: model_view(attention, tokens, sentence_b_sta
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News