AI說書 - 從0開始 - 271 | 其他解釋 Transformer 模型之方法簡介

更新於 發佈於 閱讀時間約 3 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


  • LIT
  1. LIT 的視覺介面將幫助您找到模型處理錯誤的示例,分析類似的示例,觀察當您改變上下文時模型的行為,以及其他與 Transformer 模型相關的語言問題
  2. LIT 不會像 BertViz 那樣顯示注意力頭的活動,然而,分析出錯的原因並嘗試找到解決方案是值得的
  3. 您可以選擇使用 Uniform Manifold Approximation and Projection (UMAP) 可視化或主成分分析 (PCA) 投影表示,PCA 會在特定方向和幅度上進行更線性的投影,而 UMAP 則會將其投影分解成小簇,這兩種方法的選擇取決於您在分析模型輸出時希望深入到何種程度,您可以同時運行這兩種方法,從而獲得對同一模型和示例的不同視角
  • PCA
  1. 想像一下你在廚房裡,你的廚房是一個三維的笛卡爾坐標系,廚房裡的物體也都有特定的 x、y、z 坐標,你想要烹飪一個食譜,並在廚房的桌子上收集食材,你的廚房桌子是該食譜在廚房中的高層次表示,廚房桌子同樣使用笛卡爾坐標系,但是,當你提取廚房的主要特徵來在桌子上表示食譜時,你就在執行 PCA,這是因為你顯示了組成特定食譜的主要成分
  2. 同樣的表示方法可以應用於自然語言處理,例如,字典是一個詞語的列表,但是,那些具有共同意義的詞語構成了序列主成分的表示,LIT 中序列的 PCA 表示將有助於可視化 Transformer 的輸出,獲得 NLP PCA 表示的主要特徵是:

(a) 變異數:數據集中某個詞語的數值方差,例如,詞語的出現頻率及其意義的頻率

(b) 協方差:多個單字的變異數與資料集中另一個單字的變異數相關

(c) 特徵值和特徵向量:為了獲得笛卡爾系統中的表示,我們需要協方差的向量和幅度表示,特徵向量將提供向量的方向,特徵值將提供它們的幅度

(d) 匯出資料:最後一步是將行特徵向量乘以行數據,將特徵向量應用於原始資料集


avatar-img
216會員
548內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言
avatar-img
留言分享你的想法!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 269 | 互動式 Transformer 視覺化介面 中,闡述了一項視覺化介面,其例子如下: 在 Transformer 架構中
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 266 | Transformer 視覺化透過 Dictionary Learning 中,介紹了 Dictionary Learn
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 266 | Transformer 視覺化透過 Dictionary Learning 中,介紹了 Dictionary Learn
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Local Interpretable Model-Agnostic Explanations (LIME) 是一種解釋機器學習模型的方法,特別是在處理複雜和黑箱模型,
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Yun et al. (2021) 的論文探討了 Dictionary Learning 在深度學習和自然語言處理中的應用,Dictionary Learning 是一
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 261 | SHAP 數學計算 中,介紹了 SHAP 的數學,也在 AI說書 - 從0開始 - 262 | SHAP 數學實作 中,
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 269 | 互動式 Transformer 視覺化介面 中,闡述了一項視覺化介面,其例子如下: 在 Transformer 架構中
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 266 | Transformer 視覺化透過 Dictionary Learning 中,介紹了 Dictionary Learn
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 266 | Transformer 視覺化透過 Dictionary Learning 中,介紹了 Dictionary Learn
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Local Interpretable Model-Agnostic Explanations (LIME) 是一種解釋機器學習模型的方法,特別是在處理複雜和黑箱模型,
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Yun et al. (2021) 的論文探討了 Dictionary Learning 在深度學習和自然語言處理中的應用,Dictionary Learning 是一
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 261 | SHAP 數學計算 中,介紹了 SHAP 的數學,也在 AI說書 - 從0開始 - 262 | SHAP 數學實作 中,
你可能也想看
Google News 追蹤
Thumbnail
該來的終究還是來了 度過焦躁不安的一整周,學徒老人家我的不安感等比級數的襲來,自3/19寫了第一篇關於<巴克萊銀行:倉促撤退>的報告,看到市場上的機構法人有如大洪水、地震來臨前夕開始竄逃撤退。 海湖莊園協議 接著,在3/31與4/2兩天接著寫了川普與他的財經團隊在海湖莊園豪
Thumbnail
空單爆天量、技術指標超賣、情緒恐慌到極致:美股嘎空行情有機會啟動嗎? 重點摘要: 技術面極度超賣,反彈條件醞釀中,但尚未明確止穩 SPY 與 QQQ 的重要指標,如MACD、KDJ、RSI等指標進入極端超賣區,但尚未出現底部鈍化或明確反轉訊號,技術面仍屬空方主導。 連續出現跳空缺口,空方動
Thumbnail
全新 vocus 挑戰活動「方格人氣王」來啦~四大挑戰任你選,留言 / 愛心 / 瀏覽數大 PK,還有新手專屬挑戰!無論你是 vocus 上活躍創作者或剛加入的新手,都有機會被更多人看見,獲得站上版位曝光&豐富獎勵!🏆
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在某些情況下,別人提供的 Pretrained Transformer Model 效果不盡人意,可能會想要自己做 Pretrained Model,但是這會耗費大量運
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 原始 Transformer 架構的 Transduction Process 使用編碼器堆疊、解碼器堆疊而用所有模型參數來表示參考序列,我們將該輸出序列稱為參考。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 下游任務是一個 Fine-Tuned 的 Transformer 任務,它從預先訓練的 Transformer 模型繼承模型和參數,故,下游任務是運行微調任務的預訓練模
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如 AI說書 - 從0開始 - 78 所述,經過 AI說書 - 從0開始 - 74 到目前為止的實驗,應可以漸漸感受到 Transformer 模型如何從數學層面漸漸往
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在AI說書 - 從0開始 - 41中,我們提及 Transformer 的 Encoder 架構如下圖所示,同時我們羅列幾個要點於圖示右邊: 原始 Transform
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 既然要談論 Transformer 的 Attention 機制,我們必須要談論以下主題: Transformer 架構 自注意力機制 編碼與解碼 Embedd
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從AI說書 - 從0開始 - 0到AI說書 - 從0開始 - 34,我們談了許多 Transformer 議題,以下來做條列性結論: Transformer 迫使人工
Thumbnail
該來的終究還是來了 度過焦躁不安的一整周,學徒老人家我的不安感等比級數的襲來,自3/19寫了第一篇關於<巴克萊銀行:倉促撤退>的報告,看到市場上的機構法人有如大洪水、地震來臨前夕開始竄逃撤退。 海湖莊園協議 接著,在3/31與4/2兩天接著寫了川普與他的財經團隊在海湖莊園豪
Thumbnail
空單爆天量、技術指標超賣、情緒恐慌到極致:美股嘎空行情有機會啟動嗎? 重點摘要: 技術面極度超賣,反彈條件醞釀中,但尚未明確止穩 SPY 與 QQQ 的重要指標,如MACD、KDJ、RSI等指標進入極端超賣區,但尚未出現底部鈍化或明確反轉訊號,技術面仍屬空方主導。 連續出現跳空缺口,空方動
Thumbnail
全新 vocus 挑戰活動「方格人氣王」來啦~四大挑戰任你選,留言 / 愛心 / 瀏覽數大 PK,還有新手專屬挑戰!無論你是 vocus 上活躍創作者或剛加入的新手,都有機會被更多人看見,獲得站上版位曝光&豐富獎勵!🏆
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在某些情況下,別人提供的 Pretrained Transformer Model 效果不盡人意,可能會想要自己做 Pretrained Model,但是這會耗費大量運
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 原始 Transformer 架構的 Transduction Process 使用編碼器堆疊、解碼器堆疊而用所有模型參數來表示參考序列,我們將該輸出序列稱為參考。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 下游任務是一個 Fine-Tuned 的 Transformer 任務,它從預先訓練的 Transformer 模型繼承模型和參數,故,下游任務是運行微調任務的預訓練模
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如 AI說書 - 從0開始 - 78 所述,經過 AI說書 - 從0開始 - 74 到目前為止的實驗,應可以漸漸感受到 Transformer 模型如何從數學層面漸漸往
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在AI說書 - 從0開始 - 41中,我們提及 Transformer 的 Encoder 架構如下圖所示,同時我們羅列幾個要點於圖示右邊: 原始 Transform
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 既然要談論 Transformer 的 Attention 機制,我們必須要談論以下主題: Transformer 架構 自注意力機制 編碼與解碼 Embedd
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從AI說書 - 從0開始 - 0到AI說書 - 從0開始 - 34,我們談了許多 Transformer 議題,以下來做條列性結論: Transformer 迫使人工