AI說書 - 從0開始 - 271 | 其他解釋 Transformer 模型之方法簡介

更新於 2024/12/18閱讀時間約 3 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


  • LIT
  1. LIT 的視覺介面將幫助您找到模型處理錯誤的示例,分析類似的示例,觀察當您改變上下文時模型的行為,以及其他與 Transformer 模型相關的語言問題
  2. LIT 不會像 BertViz 那樣顯示注意力頭的活動,然而,分析出錯的原因並嘗試找到解決方案是值得的
  3. 您可以選擇使用 Uniform Manifold Approximation and Projection (UMAP) 可視化或主成分分析 (PCA) 投影表示,PCA 會在特定方向和幅度上進行更線性的投影,而 UMAP 則會將其投影分解成小簇,這兩種方法的選擇取決於您在分析模型輸出時希望深入到何種程度,您可以同時運行這兩種方法,從而獲得對同一模型和示例的不同視角
  • PCA
  1. 想像一下你在廚房裡,你的廚房是一個三維的笛卡爾坐標系,廚房裡的物體也都有特定的 x、y、z 坐標,你想要烹飪一個食譜,並在廚房的桌子上收集食材,你的廚房桌子是該食譜在廚房中的高層次表示,廚房桌子同樣使用笛卡爾坐標系,但是,當你提取廚房的主要特徵來在桌子上表示食譜時,你就在執行 PCA,這是因為你顯示了組成特定食譜的主要成分
  2. 同樣的表示方法可以應用於自然語言處理,例如,字典是一個詞語的列表,但是,那些具有共同意義的詞語構成了序列主成分的表示,LIT 中序列的 PCA 表示將有助於可視化 Transformer 的輸出,獲得 NLP PCA 表示的主要特徵是:

(a) 變異數:數據集中某個詞語的數值方差,例如,詞語的出現頻率及其意義的頻率

(b) 協方差:多個單字的變異數與資料集中另一個單字的變異數相關

(c) 特徵值和特徵向量:為了獲得笛卡爾系統中的表示,我們需要協方差的向量和幅度表示,特徵向量將提供向量的方向,特徵值將提供它們的幅度

(d) 匯出資料:最後一步是將行特徵向量乘以行數據,將特徵向量應用於原始資料集


avatar-img
168會員
437內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 269 | 互動式 Transformer 視覺化介面 中,闡述了一項視覺化介面,其例子如下: 在 Transformer 架構中
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 266 | Transformer 視覺化透過 Dictionary Learning 中,介紹了 Dictionary Learn
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 266 | Transformer 視覺化透過 Dictionary Learning 中,介紹了 Dictionary Learn
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Local Interpretable Model-Agnostic Explanations (LIME) 是一種解釋機器學習模型的方法,特別是在處理複雜和黑箱模型,
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Yun et al. (2021) 的論文探討了 Dictionary Learning 在深度學習和自然語言處理中的應用,Dictionary Learning 是一
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 261 | SHAP 數學計算 中,介紹了 SHAP 的數學,也在 AI說書 - 從0開始 - 262 | SHAP 數學實作 中,
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 269 | 互動式 Transformer 視覺化介面 中,闡述了一項視覺化介面,其例子如下: 在 Transformer 架構中
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 266 | Transformer 視覺化透過 Dictionary Learning 中,介紹了 Dictionary Learn
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 266 | Transformer 視覺化透過 Dictionary Learning 中,介紹了 Dictionary Learn
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Local Interpretable Model-Agnostic Explanations (LIME) 是一種解釋機器學習模型的方法,特別是在處理複雜和黑箱模型,
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Yun et al. (2021) 的論文探討了 Dictionary Learning 在深度學習和自然語言處理中的應用,Dictionary Learning 是一
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 261 | SHAP 數學計算 中,介紹了 SHAP 的數學,也在 AI說書 - 從0開始 - 262 | SHAP 數學實作 中,
你可能也想看
Google News 追蹤
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在某些情況下,別人提供的 Pretrained Transformer Model 效果不盡人意,可能會想要自己做 Pretrained Model,但是這會耗費大量運
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 原始 Transformer 架構的 Transduction Process 使用編碼器堆疊、解碼器堆疊而用所有模型參數來表示參考序列,我們將該輸出序列稱為參考。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 下游任務是一個 Fine-Tuned 的 Transformer 任務,它從預先訓練的 Transformer 模型繼承模型和參數,故,下游任務是運行微調任務的預訓練模
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如 AI說書 - 從0開始 - 78 所述,經過 AI說書 - 從0開始 - 74 到目前為止的實驗,應可以漸漸感受到 Transformer 模型如何從數學層面漸漸往
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在AI說書 - 從0開始 - 41中,我們提及 Transformer 的 Encoder 架構如下圖所示,同時我們羅列幾個要點於圖示右邊: 原始 Transform
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 既然要談論 Transformer 的 Attention 機制,我們必須要談論以下主題: Transformer 架構 自注意力機制 編碼與解碼 Embedd
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從AI說書 - 從0開始 - 0到AI說書 - 從0開始 - 34,我們談了許多 Transformer 議題,以下來做條列性結論: Transformer 迫使人工
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在某些情況下,別人提供的 Pretrained Transformer Model 效果不盡人意,可能會想要自己做 Pretrained Model,但是這會耗費大量運
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 原始 Transformer 架構的 Transduction Process 使用編碼器堆疊、解碼器堆疊而用所有模型參數來表示參考序列,我們將該輸出序列稱為參考。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 下游任務是一個 Fine-Tuned 的 Transformer 任務,它從預先訓練的 Transformer 模型繼承模型和參數,故,下游任務是運行微調任務的預訓練模
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如 AI說書 - 從0開始 - 78 所述,經過 AI說書 - 從0開始 - 74 到目前為止的實驗,應可以漸漸感受到 Transformer 模型如何從數學層面漸漸往
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在AI說書 - 從0開始 - 41中,我們提及 Transformer 的 Encoder 架構如下圖所示,同時我們羅列幾個要點於圖示右邊: 原始 Transform
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 既然要談論 Transformer 的 Attention 機制,我們必須要談論以下主題: Transformer 架構 自注意力機制 編碼與解碼 Embedd
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從AI說書 - 從0開始 - 0到AI說書 - 從0開始 - 34,我們談了許多 Transformer 議題,以下來做條列性結論: Transformer 迫使人工