氣孔的「囚徒困境」

更新於 發佈於 閱讀時間約 6 分鐘

植物的氣孔(stomata)有兩個重要的功能:一是讓植物取得進行光合作用所需要的原料(二氧化碳),二是防止植物脫水。


我們在學習植物生理學的時候也學過,溫度會影響氣孔的開閉。但是,過去的發現,認為溫度對氣孔開閉是間接的效用。因為溫度上升會影響酵素的活性,在攝氏30度以下,酵素的活性隨著溫度上升而上升,所以這時候應該氣孔會張開;但若溫度持續升高,則酵素的活性反而會下降,所以這時候...氣孔應該不會張開?


但是,在溫度超過攝氏30度時,植物會不會過熱呢?如果要散熱,是否要打開氣孔?這真的是個難以解決的「囚徒困境」,畢竟張開氣孔可以降溫,但可能會導致失水,關閉氣孔可以鎖住水分,但又會過熱...


想解決這個大哉問可不容易,畢竟我們在做實驗的時候,都希望只留下一個項目是變化的。也就是說,當我們觀察溫度對氣孔開閉的影響時,我們希望其他的條件通通都不要變化。


我們可以控制光線,但是,要控制蒸氣壓差(vapor pressure deficit,VPD)就比較難。畢竟,溫度上升,會讓空氣能夠容納更多水蒸氣。所以,要讓葉片內部的葉室(leaf chamber)與葉片外面的蒸氣壓差保持在穩定的狀態,真的是有點困難。


最近,在美國加大聖地牙哥分校的研究團隊,想出了解決的方法。他們藉由控制進入葉室的蒸氣濃度,讓蒸氣壓差維持在1.15-1.30 kPa的範圍內。然後,他們就可以來觀察溫度對氣孔開閉的影響了。


首先,他們發現,從攝氏18度到28度之間,溫度升高會造成氣孔張開,溫度降低則氣孔會關閉。不過,在這個範圍裡,氣孔的開閉顯然是跟光合作用有關。為什麼呢?因為他們發現,要看到升溫開氣孔,降溫關氣孔,需要把光照提高到500 μmol m⁻² s⁻¹ 。如果光照強度只有150 μmol m⁻² s⁻¹ (不到剛才的1/3),則氣孔對溫度的反應就大為減弱甚至消失。至於完全的黑暗呢?那麼氣孔就對溫度完全無感了。


過去的研究發現,藍光可以讓植物張開氣孔。所以,在這個溫度範圍內,研究團隊測試了向光素(phototropin)是否會影響氣孔對溫度的反應。結果他們發現,缺少兩個向光素(phot1/2)的突變株,它的氣孔對溫度的反應變弱了。


另外一個會影響氣孔的因素是離層酸(ABA,abscisic acid),會使氣孔關閉。研究團隊用了無法合成離層酸的突變株,結果這個突變植物仍然可以對溫度做出適當的反應。


另外,植物的氣孔也會因為二氧化碳的濃度改變而開/關。所以,研究團隊測試了幾個不同的突變株:這些突變株無法感應二氧化碳或是碳酸鹽。結果這些突變株的氣孔對溫度變化的反應受到非常大的影響,意味著感應二氧化碳的能力與植物氣孔對溫度的反應息息相關。


所以,我們可以看到,在攝氏18-28度之間,升溫氣孔張開,降溫氣孔關閉,是因為光合作用所導致,但是二氧化碳與向光素對這個反應很重要。


那麼,若溫度再往上升呢?


研究團隊發現,當溫度上升到34度時,氣孔的開閉就不再與光合作用相關了。他們發現,這時候雖然氣孔還是開著的,但是光合作用的速率反而下降!於是,葉室的二氧化碳濃度就上升了!


為什麼高溫時光合作用速率下降,氣孔反而張開呢?研究團隊認為,植物在這時候可能是因為要優先解決高溫帶來的生理壓力,所以要藉著張開氣孔來提高蒸散作用好降溫,就像我們流汗散熱一樣。這意味著,在高溫時植物的其他信息傳導路徑(如熱休克)可能被活化,而這些路徑壓制了低溫下的反應機制。

圖片作者:ChatGPT

圖片作者:ChatGPT


所以,從實驗結果我們看到,隨著溫度上升,植物先是會張開氣孔以取得更多二氧化碳;但當溫度太高時,雖然光合作用速率下降(可能是因為酵素失去活性),但因為高溫所造成的生理壓力,此時植物仍然會繼續讓氣孔開著。而且,這些現象極有可能是「放諸四海而皆準」的,因為研究團隊測試了雙子葉(阿拉伯芥)與單子葉(二穗短柄草,Brachypodium distachyon)植物,得到了相同的結果。


這個結果也提醒了我們,天氣越熱,植物會因為需要散熱而張開氣孔,於是就需要更多的水。在當前的暖化氣候下,這也意味著農業會需要更多的灌溉用水!


參考文獻:


Nattiwong Pankasem, Po‐Kai Hsu, Bryn N. K. Lopez, Peter J. Franks, Julian I. Schroeder. Warming triggers stomatal opening by enhancement of photosynthesis and ensuing guard cell CO2 sensing, whereas higher temperatures induce a photosynthesis‐uncoupled response. New Phytologist, 2024; DOI: 10.1111/nph.20121


留言
avatar-img
留言分享你的想法!
麥康納-avatar-img
2024/10/03
用多人賽局的'囚徒困境'來比喻植物的這個決定有點怪,覺得像線性規劃問題之類
❦ 莊小昕-avatar-img
2024/10/03
謝謝老師分享!植物真的很聰明,比人類想像的還厲害!畢竟是攸關生存。 不過「氣孔開或閉」這個概念真的是非常的複雜!!
avatar-img
老葉報報
200會員
643內容數
主要介紹關於植物的新資訊,但是也會介紹一些其他的。 版主在大學教植物生理學,也教過生物化學。 如有推薦書籍需求,請e-mail:susanyeh816@gmail.com
老葉報報的其他內容
2025/04/29
大麥曾經是人類重要的糧食之一,雖然現在食用的人並不多,但依然是重要的動物飼料原料與釀造作物之一。因此,大麥的產量當然重要。 大麥的產量由它的花序,也就是我們熟悉的麥穗來決定。有趣的是,科學家發現大麥花序的形態,其實是由一套名叫CLAVATA訊息傳遞系統負責的喔!
Thumbnail
2025/04/29
大麥曾經是人類重要的糧食之一,雖然現在食用的人並不多,但依然是重要的動物飼料原料與釀造作物之一。因此,大麥的產量當然重要。 大麥的產量由它的花序,也就是我們熟悉的麥穗來決定。有趣的是,科學家發現大麥花序的形態,其實是由一套名叫CLAVATA訊息傳遞系統負責的喔!
Thumbnail
2025/04/29
提到歷史上的群眾狂熱,大家很難不去想到發生在十七世紀的「鬱金香熱」。當時不知道為何,鬱金香的球莖忽然身價百倍,大家瘋了似地搶購,但是除了少數真正的園藝愛好者之外,絕大部分的民眾都只是把它當作投資。 當時最熱門的,是這種有條紋的鬱金香;後來知道,這種鬱金香是被病毒感染。 但是,為何病毒感染會製造圖案?
Thumbnail
2025/04/29
提到歷史上的群眾狂熱,大家很難不去想到發生在十七世紀的「鬱金香熱」。當時不知道為何,鬱金香的球莖忽然身價百倍,大家瘋了似地搶購,但是除了少數真正的園藝愛好者之外,絕大部分的民眾都只是把它當作投資。 當時最熱門的,是這種有條紋的鬱金香;後來知道,這種鬱金香是被病毒感染。 但是,為何病毒感染會製造圖案?
Thumbnail
2025/04/28
植物進行光合作用時,主要使用可見光。傳統上,科學家認為超過700奈米的長波光(也就是所謂的「紅外光」)能量太低,無法推動植物光合作用中的關鍵氧化還原反應。因此,「700奈米」被視為光合作用的紅色極限(red limit)。 不過,最近科學家們在藍綠菌中找到了突破點!
Thumbnail
2025/04/28
植物進行光合作用時,主要使用可見光。傳統上,科學家認為超過700奈米的長波光(也就是所謂的「紅外光」)能量太低,無法推動植物光合作用中的關鍵氧化還原反應。因此,「700奈米」被視為光合作用的紅色極限(red limit)。 不過,最近科學家們在藍綠菌中找到了突破點!
Thumbnail
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
介紹朋友新開的蝦皮選物店『10樓2選物店』,並分享方格子與蝦皮合作的分潤計畫,註冊流程簡單,0成本、無綁約,推薦給想增加收入的讀者。
Thumbnail
介紹朋友新開的蝦皮選物店『10樓2選物店』,並分享方格子與蝦皮合作的分潤計畫,註冊流程簡單,0成本、無綁約,推薦給想增加收入的讀者。
Thumbnail
當你邊吃粽子邊看龍舟競賽直播的時候,可能會順道悼念一下2300多年前投江的屈原。但你知道端午節及其活動原先都與屈原毫無關係嗎?這是怎麼回事呢? 本文深入探討端午節設立初衷、粽子、龍舟競渡與屈原自沉四者。看完這篇文章,你就會對端午、粽子、龍舟和屈原的四角關係有新的認識喔。那就讓我們一起解開謎團吧!
Thumbnail
當你邊吃粽子邊看龍舟競賽直播的時候,可能會順道悼念一下2300多年前投江的屈原。但你知道端午節及其活動原先都與屈原毫無關係嗎?這是怎麼回事呢? 本文深入探討端午節設立初衷、粽子、龍舟競渡與屈原自沉四者。看完這篇文章,你就會對端午、粽子、龍舟和屈原的四角關係有新的認識喔。那就讓我們一起解開謎團吧!
Thumbnail
植物的氣孔(stomata)有兩個重要的功能:一是讓植物取得進行光合作用所需要的原料(二氧化碳),二是防止植物脫水。 但是在高溫的時候,光合作用的酵素可能因高溫而失去活性,這時候,氣孔要不要開呢?不開無法散熱,植物就會過熱;開的話,植物就會喪失許多水分...怎麼辦?
Thumbnail
植物的氣孔(stomata)有兩個重要的功能:一是讓植物取得進行光合作用所需要的原料(二氧化碳),二是防止植物脫水。 但是在高溫的時候,光合作用的酵素可能因高溫而失去活性,這時候,氣孔要不要開呢?不開無法散熱,植物就會過熱;開的話,植物就會喪失許多水分...怎麼辦?
Thumbnail
植物的葉綠體不只是提供光合作用的產物給植物,還肩負著提供植物細胞能量(ATP)的角色。因此,每個植物細胞平均所含有的粒線體數目,比動物細胞要少。但是,當冬季來臨,日照時間變短時,植物要怎麼因應因為日照時間變短,產生的ATP變少的狀況呢?
Thumbnail
植物的葉綠體不只是提供光合作用的產物給植物,還肩負著提供植物細胞能量(ATP)的角色。因此,每個植物細胞平均所含有的粒線體數目,比動物細胞要少。但是,當冬季來臨,日照時間變短時,植物要怎麼因應因為日照時間變短,產生的ATP變少的狀況呢?
Thumbnail
植物需要氣孔(stoma)與外界的大氣進行交換才能取得足夠的二氧化碳與氧氣。另外,植物還需要進行蒸散作用來帶動導管(木質部xylem)裡的水分,才能運輸礦物質與糖。 但是,氣孔對植物的影響到底是怎麼樣的?最近的研究,有了一些有趣的發現。
Thumbnail
植物需要氣孔(stoma)與外界的大氣進行交換才能取得足夠的二氧化碳與氧氣。另外,植物還需要進行蒸散作用來帶動導管(木質部xylem)裡的水分,才能運輸礦物質與糖。 但是,氣孔對植物的影響到底是怎麼樣的?最近的研究,有了一些有趣的發現。
Thumbnail
多數植物生長從幼年期到成熟期,最重要的差別是「開花能力」,當然還是會有一些植物時間差不多了還不開花,需要適當的環境處理,才能達到正確的開花條件,也有一些植物生長過於旺盛便不開花。
Thumbnail
多數植物生長從幼年期到成熟期,最重要的差別是「開花能力」,當然還是會有一些植物時間差不多了還不開花,需要適當的環境處理,才能達到正確的開花條件,也有一些植物生長過於旺盛便不開花。
Thumbnail
作物只能在一定的溫度範圍內生長,多數是10°C至30°C,過高或過低,植物的生理現象就會受到抑制,使得作物停止生長或死亡。作物在營養生長時,地溫和水溫的影響較大,而開花結果時,主要會受到氣溫的影響,特別是溫度對花芽的形成有著密切的關係。
Thumbnail
作物只能在一定的溫度範圍內生長,多數是10°C至30°C,過高或過低,植物的生理現象就會受到抑制,使得作物停止生長或死亡。作物在營養生長時,地溫和水溫的影響較大,而開花結果時,主要會受到氣溫的影響,特別是溫度對花芽的形成有著密切的關係。
Thumbnail
對植物來說,水太多會造成問題,水太少也是會有問題,並非是太過嬌貴的關係,而是植物「跑不了」啊! 部份農民為了提高果實甜度刻意限水,如番茄栽培,但過份處理會造成作物吸收養分困難,導致枝條變細、葉片和花序變小、果實產量低,是否值得,見仁見智。
Thumbnail
對植物來說,水太多會造成問題,水太少也是會有問題,並非是太過嬌貴的關係,而是植物「跑不了」啊! 部份農民為了提高果實甜度刻意限水,如番茄栽培,但過份處理會造成作物吸收養分困難,導致枝條變細、葉片和花序變小、果實產量低,是否值得,見仁見智。
Thumbnail
植物進行光合作用,會吸收二氧化碳,釋放氧氣,這是大家所熟知的概念,但植物並非只造氧不需氧。植物和我們人一樣也會呼吸,植物透過呼吸作用產生能量,這些能量能維持植物生命的一切活動,讓植物能去吸收養分,因此植物的供氧狀況會影響其吸收養分的能力,一旦缺氧,對植物的危害非常明顯。
Thumbnail
植物進行光合作用,會吸收二氧化碳,釋放氧氣,這是大家所熟知的概念,但植物並非只造氧不需氧。植物和我們人一樣也會呼吸,植物透過呼吸作用產生能量,這些能量能維持植物生命的一切活動,讓植物能去吸收養分,因此植物的供氧狀況會影響其吸收養分的能力,一旦缺氧,對植物的危害非常明顯。
Thumbnail
土壤經過下雨或灌溉,會保持一些水分,當這些水分快要用完,卻無法即時補充的時候,植物的葉片會萎凋,短期內供水會恢復,但過久就沒辦法恢復,這些土壤最後所含的水分就稱為「永久凋萎點」,土壤濕度低於永久凋萎點的植物會在12小時內枯萎。 雖然世界上多數地區都不是極端乾燥,但還是會面臨缺水乾旱的問題,甚至在較
Thumbnail
土壤經過下雨或灌溉,會保持一些水分,當這些水分快要用完,卻無法即時補充的時候,植物的葉片會萎凋,短期內供水會恢復,但過久就沒辦法恢復,這些土壤最後所含的水分就稱為「永久凋萎點」,土壤濕度低於永久凋萎點的植物會在12小時內枯萎。 雖然世界上多數地區都不是極端乾燥,但還是會面臨缺水乾旱的問題,甚至在較
Thumbnail
上一篇文章提到氣孔的保衛細胞在吸水的時候會膨脹,這時所產生的力量稱為「膨壓」,膨壓高就能讓氣孔張開。不過,膨壓不只存在於氣孔四周,而是在植物細胞內隨處可見。 這股壓力關係著植物的水分平衡,包括幼莖和葉子就是由這股壓力支撐著,植物藉由吸水來保持膨壓,而膨壓消失時,這些器官就會萎縮,植物因此萎凋。
Thumbnail
上一篇文章提到氣孔的保衛細胞在吸水的時候會膨脹,這時所產生的力量稱為「膨壓」,膨壓高就能讓氣孔張開。不過,膨壓不只存在於氣孔四周,而是在植物細胞內隨處可見。 這股壓力關係著植物的水分平衡,包括幼莖和葉子就是由這股壓力支撐著,植物藉由吸水來保持膨壓,而膨壓消失時,這些器官就會萎縮,植物因此萎凋。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News