第二部:《深度學習》12/100 為什麼需要隱藏層?🧱 加深模型,學出抽象概念!

更新於 發佈於 閱讀時間約 5 分鐘

AI時代系列(2) 機器學習三部曲: 🔹 第二部:《深度學習 —— 神經網路的革命》

12/100 第二週:多層感知器 MLP

12.為什麼需要隱藏層?🧱 加深模型,學出抽象概念!

________________________________________

✅ 核心概念:

在神經網路中,「隱藏層(Hidden Layers)」是整個學習過程的靈魂所在。沒有它,模型僅能處理線性可分的問題,一旦遇到複雜的影像、語音、語意分析,就完全無法應對。

📌 一句話總結:

隱藏層讓神經網路具備「看見抽象規律」的能力。

________________________________________

🧠 類比:大腦的處理過程

想像你看到一隻動物:

第一層辨識邊緣(耳朵、腳)

第二層辨識局部形狀(頭、身體)

第三層辨識整體概念(這是「貓」)

📌 每一層都負責處理「不同層級的抽象」,這就是隱藏層的作用。

________________________________________

🧩 隱藏層的功能分層:

層級 功能說明 類比於大腦的處理

🟩 輸入層 接收原始資料(像素、文字、數值) 感官輸入

🟨 隱藏層 1 提取低階特徵(如邊緣、顏色、簡單模式) 初階視覺皮質

🟨 隱藏層 2+ 組合與抽象中高階特徵(形狀、概念) 聯合皮質

🟥 輸出層 預測分類結果(機率分布) 意識反應 / 決策

________________________________________

🔬 數學觀點:

沒有隱藏層的神經網路 = 僅執行線性轉換(Wx + b)

📉 這會導致:

只能解決線性分類問題(如 AND、OR)

無法處理 XOR 問題

難以擴展到語音辨識、圖像辨識等任務

➡️ 加入隱藏層 + 激活函數(如 ReLU)後,模型才能擁有非線性擬合能力。

________________________________________

🏗️ 小圖示(層層抽象):

👉 輸入層 🟩 接收784個像素值(28x28圖像展平成一維向量),是原始資料的起點;

👉 第一隱藏層 🟨 提取邊緣、顏色變化與基本輪廓;

👉 第二隱藏層 🟨 進一步組合特徵,辨識形狀與局部結構;

👉 第三隱藏層 🟨(視任務需要)形成更高層次的抽象語義,例如「數字8的中間空洞」;

👉 輸出層 🟥 將最終特徵轉換為0到9的分類機率,輸出預測結果。

這張小圖示以「層層抽象」的方式,簡明呈現了神經網路處理影像(如MNIST手寫數字)時的資料流與特徵轉換歷程:

整體過程展現出深度學習「由低階到高階、由具體到抽象」的特徵學習能力,是人工智慧模擬人腦視覺處理的重要基礎。

________________________________________

✅ MLP 的演化思路:

結構 能力

無隱藏層 只能做線性分類

單隱藏層 可解非線性問題,如 XOR

多個隱藏層 層層抽象、學習複雜結構與語意

深層神經網路 具備表現任意函數的理論能力

________________________________________

🎯 小結與啟示:

✅ 隱藏層 = 模型學習「邏輯」與「概念」的關鍵橋樑

✅ 沒有隱藏層,模型就像死記資料的計算器

✅ 有了隱藏層,神經網路才能理解圖像、文字、語音中的抽象規律


留言
avatar-img
留言分享你的想法!
avatar-img
Hansen W的沙龍
8會員
119內容數
AIHANS沙龍是一個結合AI技術實戰、產業策略與自我成長的知識平台,主題涵蓋機器學習、生成式AI、創業經驗、財務規劃及哲學思辨。這裡不只提供系統化學習資源與實作案例,更強調理性思維與行動力的結合。無論你是AI初學者、創業者,還是追求人生升維的行者,都能在這裡找到前進的方向與志同道合的夥伴。
Hansen W的沙龍的其他內容
2025/08/29
多層感知器(MLP)是最基本的前饋神經網路,由輸入層、隱藏層與輸出層組成,並透過多層全連接層逐步提取特徵。每層節點與前一層所有節點相連,常搭配非線性激活函數如 ReLU,使模型具備學習複雜關係的能力。MLP 是深度學習的基礎結構之一,廣泛應用於分類與回歸任務中。
2025/08/29
多層感知器(MLP)是最基本的前饋神經網路,由輸入層、隱藏層與輸出層組成,並透過多層全連接層逐步提取特徵。每層節點與前一層所有節點相連,常搭配非線性激活函數如 ReLU,使模型具備學習複雜關係的能力。MLP 是深度學習的基礎結構之一,廣泛應用於分類與回歸任務中。
2025/08/29
AI時代系列(2) 機器學習三部曲: 🔹 第二部:《深度學習 —— 神經網路的革命》 10/100 第一週:深度學習基礎入門 10.小結與測驗:手寫數字分類(MNIST)🖊 用 TensorFlow 練習第一個深度模型! __________________________________
2025/08/29
AI時代系列(2) 機器學習三部曲: 🔹 第二部:《深度學習 —— 神經網路的革命》 10/100 第一週:深度學習基礎入門 10.小結與測驗:手寫數字分類(MNIST)🖊 用 TensorFlow 練習第一個深度模型! __________________________________
2025/08/29
為提升模型泛化能力,資料須切分為訓練集、驗證集與測試集。訓練集用來學習參數,驗證集用於調參與早停,測試集則專供最終評估,不能參與訓練。常見比例為 6:2:2,資料量少時可用 K-Fold 交叉驗證確保評估穩定。適當切分資料能避免模型「偷看答案」,確保學習效果真實可靠。
2025/08/29
為提升模型泛化能力,資料須切分為訓練集、驗證集與測試集。訓練集用來學習參數,驗證集用於調參與早停,測試集則專供最終評估,不能參與訓練。常見比例為 6:2:2,資料量少時可用 K-Fold 交叉驗證確保評估穩定。適當切分資料能避免模型「偷看答案」,確保學習效果真實可靠。
看更多
你可能也想看
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
特徵工程是機器學習中的核心技術,通過將原始數據轉換為有意義的特徵,以提升模型的準確性和穩定性。常見的特徵工程方法包括異常值檢測、特徵轉換、特徵縮放、特徵表示、特徵選擇和特徵提取。本文將深入探討這些方法的適用情況及具體實施流程,以幫助讀者有效利用特徵工程來優化機器學習模型表現。
Thumbnail
特徵工程是機器學習中的核心技術,通過將原始數據轉換為有意義的特徵,以提升模型的準確性和穩定性。常見的特徵工程方法包括異常值檢測、特徵轉換、特徵縮放、特徵表示、特徵選擇和特徵提取。本文將深入探討這些方法的適用情況及具體實施流程,以幫助讀者有效利用特徵工程來優化機器學習模型表現。
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
本文參考TensorFlow官網Deep Convolutional Generative Adversarial Network的程式碼來加以實作說明。 示範如何使用深度卷積生成對抗網路(DCGAN) 生成手寫數位影像。
Thumbnail
本文參考TensorFlow官網Deep Convolutional Generative Adversarial Network的程式碼來加以實作說明。 示範如何使用深度卷積生成對抗網路(DCGAN) 生成手寫數位影像。
Thumbnail
延續上一篇訓練GAM模型,這次我們讓神經網路更多層更複雜一點,來看訓練生成的圖片是否效果會更好。 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 資料集分割處理的部分在延續上篇文章,從第五點開始後修改即可,前面都一樣 訓練過程,比較圖 是不是CNN的效果比MLP還要好,
Thumbnail
延續上一篇訓練GAM模型,這次我們讓神經網路更多層更複雜一點,來看訓練生成的圖片是否效果會更好。 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 資料集分割處理的部分在延續上篇文章,從第五點開始後修改即可,前面都一樣 訓練過程,比較圖 是不是CNN的效果比MLP還要好,
Thumbnail
本文將延續上一篇文章,經由訓練好的VAE模型其中的解碼器,來生成圖片。 [深度學習]訓練VAE模型用於生成圖片_訓練篇 輸入產生的隨機雜訊,輸入VAE的解碼器後,生成的圖片
Thumbnail
本文將延續上一篇文章,經由訓練好的VAE模型其中的解碼器,來生成圖片。 [深度學習]訓練VAE模型用於生成圖片_訓練篇 輸入產生的隨機雜訊,輸入VAE的解碼器後,生成的圖片
Thumbnail
透過這篇文章,我們將瞭解如何使用PyTorch實作圖神經網絡中的訊息傳遞機制,從定義消息傳遞的類別到實作消息傳遞過程。我們也探討了各種不同的消息傳遞機制,並通過對單次和多次傳遞過程的結果,可以看到節點特徵如何逐步傳遞與更新。
Thumbnail
透過這篇文章,我們將瞭解如何使用PyTorch實作圖神經網絡中的訊息傳遞機制,從定義消息傳遞的類別到實作消息傳遞過程。我們也探討了各種不同的消息傳遞機制,並通過對單次和多次傳遞過程的結果,可以看到節點特徵如何逐步傳遞與更新。
Thumbnail
GNN發展背景 傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,
Thumbnail
GNN發展背景 傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,
Thumbnail
本文介紹了AI助手在數據收集和訓練過程中的工作原理和不斷進步的過程。關注的內容包括從公開的網絡資源、書籍、文章等渠道收集數據,數據的清洗和結構化處理,知識庫的增量更新以及訓練算法和模型的優化。如果大家對AI助手的發展還有任何其他感興趣的話題或建議,歡迎隨時告訴我們,讓我們共同探索,攜手進步。
Thumbnail
本文介紹了AI助手在數據收集和訓練過程中的工作原理和不斷進步的過程。關注的內容包括從公開的網絡資源、書籍、文章等渠道收集數據,數據的清洗和結構化處理,知識庫的增量更新以及訓練算法和模型的優化。如果大家對AI助手的發展還有任何其他感興趣的話題或建議,歡迎隨時告訴我們,讓我們共同探索,攜手進步。
Thumbnail
本文將展示使用不同激活函數(ReLU 和 Sigmoid)的效果。 一個簡單的多層感知器(MLP)模型來對 Fashion-MNIST 資料集進行分類。 函數定義 Sigmoid 函數 Sigmoid 函數將輸入壓縮到 0到 1 之間: 特性: 輸出範圍是 (0,1)(0, 1)(0,1
Thumbnail
本文將展示使用不同激活函數(ReLU 和 Sigmoid)的效果。 一個簡單的多層感知器(MLP)模型來對 Fashion-MNIST 資料集進行分類。 函數定義 Sigmoid 函數 Sigmoid 函數將輸入壓縮到 0到 1 之間: 特性: 輸出範圍是 (0,1)(0, 1)(0,1
Thumbnail
本文主要介紹神經網路訓練辨識的過程,利用fashion_mnist及簡單的神經網路來進行分類。 使用只有兩層的神經網路來訓練辨識fashion_mnist資料。
Thumbnail
本文主要介紹神經網路訓練辨識的過程,利用fashion_mnist及簡單的神經網路來進行分類。 使用只有兩層的神經網路來訓練辨識fashion_mnist資料。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News