【AI訓練故障篇】FloatTensor and cuda.FloatTensor should be the same

更新於 發佈於 閱讀時間約 3 分鐘
raw-image
圖片來源

我們已經介紹過關於Transformer模型的平台「【Hugging Face】Ep.1 平凡人也能玩的起的AI平台」,而操作的過程中相信也會有不少玩家會遇到這樣的狀況,因此將遇到的問題整理並分享解決方法,讓需要的朋友可以參考一下。

問題

Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor

前景提要

故事是這樣的, 小明是個軟體工程師, 專門研究語音辨識領域的技術, 有一天進行wav2vec2的語音辨識模型進行辨識時, 竟然在關鍵時刻發生了錯誤, 而這個錯誤可能也會是其他人遇到的狀況, 因此決定將過程好好整理一番, 以幫助在相同技術道路上的夥伴一起突破難關。

raw-image

圖片來源...

首先小明使用了wav2vec2的語辨模型, 並載入中文模型「wav2vec2-large-xlsr-53-chinese-zh-cn-gpt」, 並期望使用GPU加速辨識速度, 因此將DEVICE設定為cuda。

from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
SRC_MODEL = 'ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt'
DEVICE = 'cuda'
processor = Wav2Vec2Processor.from_pretrained(SRC_MODEL)
model = Wav2Vec2ForCTC.from_pretrained(SRC_MODEL).to(DEVICE)

接著就直接對音檔進行辨識。

audio_buffer, _ = sf.read('test.wav')

input_values = processor(audio_buffer, sampling_rate=16000, return_tensors="pt").input_values

logits = model(input_values).logits

predicted_ids = torch.argmax(logits, dim=-1)

transcription = processor.decode(predicted_ids[0])

transcription

結果竟然出錯了…, 這應該怎麼辦呢?

RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) ...

原因

根據錯誤訊息推測大致是輸入類型是CPU(torch.FloatTensor), 但模型類型是GPU(torch.cuda.FloatTensor), 因此需要將數據來源轉成GPU的類型才能相符。

如何解決

我們試著將音訊數據轉成「torch.cuda.FloatTensor」類型的資料。

input_values = input_values.to(DEVICE)

如此一來模型與數據的資料型態就會都一致了, 畢竟GPU與CPU並不相容,因此進行運算時也要非常的小心…。

留言
avatar-img
留言分享你的想法!
avatar-img
阿Han的沙龍
130會員
288內容數
哈囉,我是阿Han,是一位 👩‍💻 軟體研發工程師,喜歡閱讀、學習、撰寫文章及教學,擅長以圖代文,化繁為簡,除了幫助自己釐清思路之外,也希望藉由圖解的方式幫助大家共同學習,甚至手把手帶您設計出高品質的軟體產品。
阿Han的沙龍的其他內容
2025/01/29
🤔 簡單且靜態就足夠了? 相信我們在開發Python應用程式的過程中, 常常會借用Enum來定義我們可能的選項, 就像顏色紅、綠、黃會有這樣的結構: class Color(str, Enum): RED = 'red' GREED = 'green' YELLOW = 'yel
Thumbnail
2025/01/29
🤔 簡單且靜態就足夠了? 相信我們在開發Python應用程式的過程中, 常常會借用Enum來定義我們可能的選項, 就像顏色紅、綠、黃會有這樣的結構: class Color(str, Enum): RED = 'red' GREED = 'green' YELLOW = 'yel
Thumbnail
2025/01/08
當我們的系統發展到一定程度時, 難免會面臨到正式上線的問題, 要如何讓維運更加簡易呢? 尤其隨著複雜的客製化配置的出現時, 我們應該如何有效的管理, 甚至驗證配置是否如預期資料型態、格式…, 而正好 pydantic 可以滿足這樣的需求, 就讓我們來看看怎麼使用吧! 需安裝的套件 pip i
Thumbnail
2025/01/08
當我們的系統發展到一定程度時, 難免會面臨到正式上線的問題, 要如何讓維運更加簡易呢? 尤其隨著複雜的客製化配置的出現時, 我們應該如何有效的管理, 甚至驗證配置是否如預期資料型態、格式…, 而正好 pydantic 可以滿足這樣的需求, 就讓我們來看看怎麼使用吧! 需安裝的套件 pip i
Thumbnail
2025/01/02
要如何使用unicorn啟動多個FastAPI服務, 歡迎參考我們的「【💊 Python的解憂錦囊 - FastAPI】如何啟動多個Workers」。 當我們試著設計帶入模組化時… 我們在「【💊 Python的解憂錦囊 - FastAPI】使用 lifespan 來共享資料與管理生命週期
Thumbnail
2025/01/02
要如何使用unicorn啟動多個FastAPI服務, 歡迎參考我們的「【💊 Python的解憂錦囊 - FastAPI】如何啟動多個Workers」。 當我們試著設計帶入模組化時… 我們在「【💊 Python的解憂錦囊 - FastAPI】使用 lifespan 來共享資料與管理生命週期
Thumbnail
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 39 至 AI說書 - 從0開始 - 69 的第二章內容,我們拿 Encoder 出來看: 幾點注意如下: BERT 模型使用 M
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 39 至 AI說書 - 從0開始 - 69 的第二章內容,我們拿 Encoder 出來看: 幾點注意如下: BERT 模型使用 M
Thumbnail
本文介紹了self-attention在處理不固定大小輸入值時的應用,並討論瞭如何計算self-attention以及transformer中的multi-head self-attention。此外,文章還探討了在語音辨識和圖片處理中使用self-attention的方法,以及與CNN的比較。
Thumbnail
本文介紹了self-attention在處理不固定大小輸入值時的應用,並討論瞭如何計算self-attention以及transformer中的multi-head self-attention。此外,文章還探討了在語音辨識和圖片處理中使用self-attention的方法,以及與CNN的比較。
Thumbnail
前言 在先前的文章中,我們探討了 IBM Watsonx 在客戶滿意度分析中的應用。今天,我們將利用 Google 的兩款大型語言模型(LLM)— flan-ul2 和 flan-t5-xxl,展示它們如何串聯起來生成關於特定主題的隨機問題和回答。 在這篇文章中,將使用 SimpleSequen
Thumbnail
前言 在先前的文章中,我們探討了 IBM Watsonx 在客戶滿意度分析中的應用。今天,我們將利用 Google 的兩款大型語言模型(LLM)— flan-ul2 和 flan-t5-xxl,展示它們如何串聯起來生成關於特定主題的隨機問題和回答。 在這篇文章中,將使用 SimpleSequen
Thumbnail
前言 在上一篇文章中,分享了第一次使用 IBM Watsonx 的經歷,以及我對 Prompt lab 功能的初步探索。繼續這個話題,本文將探討 Watsonx 平台對 Python SDK 的支持,以及實作幾個 LLM 的應用,這一特性為開發者提供了極大的便利,使得在此平台上進行開發和應用大型語
Thumbnail
前言 在上一篇文章中,分享了第一次使用 IBM Watsonx 的經歷,以及我對 Prompt lab 功能的初步探索。繼續這個話題,本文將探討 Watsonx 平台對 Python SDK 的支持,以及實作幾個 LLM 的應用,這一特性為開發者提供了極大的便利,使得在此平台上進行開發和應用大型語
Thumbnail
本篇文章為大家導讀近日火熱的Mamba Paper,新聞標題說它是Transformer的繼任者,是否真是如此? 讓我們一起一探究竟,本文著重介紹論文前半部分。
Thumbnail
本篇文章為大家導讀近日火熱的Mamba Paper,新聞標題說它是Transformer的繼任者,是否真是如此? 讓我們一起一探究竟,本文著重介紹論文前半部分。
Thumbnail
要檢查兩段長篇文字,內容是否雷同,長久以來困擾著大家,沒有好的嵌入模型,會耗費大量人力,需要對長篇文檔進行人工閱讀然後人工分類。本文除了展示如何能完美的解決這個痛點以外,也提供一些延伸應用思路,學習CP值很高。期待你能從本文取得許多新的應用思路與應用潛力!
Thumbnail
要檢查兩段長篇文字,內容是否雷同,長久以來困擾著大家,沒有好的嵌入模型,會耗費大量人力,需要對長篇文檔進行人工閱讀然後人工分類。本文除了展示如何能完美的解決這個痛點以外,也提供一些延伸應用思路,學習CP值很高。期待你能從本文取得許多新的應用思路與應用潛力!
Thumbnail
嘗試一個微調金融領域的 LLM:FinGPT (一個追求開源、輕量、低成本的微調在金融領域的 LLM(大型語言模型)),來做新聞標題情感(Sentiment)極性辨識。 PS. 有附註 Hugging Face 模型下載與 cache 路徑自定義說明 因為研究題目,最近在接觸各種金融領域微調(
Thumbnail
嘗試一個微調金融領域的 LLM:FinGPT (一個追求開源、輕量、低成本的微調在金融領域的 LLM(大型語言模型)),來做新聞標題情感(Sentiment)極性辨識。 PS. 有附註 Hugging Face 模型下載與 cache 路徑自定義說明 因為研究題目,最近在接觸各種金融領域微調(
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News