Chat GPT是黑盒子嗎 ?

更新於 發佈於 閱讀時間約 1 分鐘

人工智慧中最受歡迎的作法莫過於類神經網路,以當今最受歡迎的大型語言模型 (LLM)也不例外,然而這些持續受到爭議:黑盒子,也就是說我們不知道它內部怎麼運作,只知道給它一段話,它就會輸出一段話來回應。

以下從幾個面向來討論「黑盒子」議題:


  • 透明性 Transparency

以LLM模型的開源層度來詮釋,以下以三個程度來說明

  1. Chat GPT系列:完全沒有公開LLM的權重; 也沒有公開訓練方法
  2. Llama系列:有公開LLM權重; 但沒有公開訓練方法
  3. Pythia系列:有公開LLM權重; 也有公開訓練方法


  • 思維可理解 Interpretable

以Decision Tree這種Machine Learning方法最為被推崇,因為對於Decision Tree中每個分支的生長都能有Entropy與Gini Index為依據,不過這裡存在爭議,因為當Decision Tree生長到非常巨大,非常深之時,Interpretable這項特性就會漸漸喪失

以當今最火紅的LLM,裏面的關件元素乃是Transformer,這很明顯也不具備Interpretable特性


  • 可解釋性Explainable

核心議題就是:「找出影響輸出的關鍵輸入

可行作法舉例:

  1. 觀察每一個輸入的改變對輸出的影響
  2. 在Transformer中,觀察Attention機制的數值
  3. 找出影響輸出的關鍵訓練資料 (模型這樣講,是受到哪筆訓練資料影響呢?)
  4. 以Probing技術,深入LLM模型中挖掘Embedding層資訊
  5. 將LLM模型中的Embedding高維資訊投影至低微空間
  6. 既然LLM都會說話了,那就直接問它即可 (不全然可信)


資訊來源:https://www.youtube.com/watch?v=rZzfqkfZhY8

avatar-img
181會員
487內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
回顧ChatGPT回答不是你要的怎麼辦?這篇文章,Chat GPT回答的結果常常不如人意,因此有個Facebook提出的技術,叫做RAG,它是提升Chat GPT回答品質的方式之一,詳細實作步驟可以參照自己做免錢Chat GPT吧。 這次我們來換個方法,今天要介紹Reinforcement Lea
當Chat GPT回答的東西不是你想要的,怎麼辦呢? 我們提供想法的思路於:ChatGPT回答不是你要的怎麼辦? 我想自己動手改善,但是我沒有GPU這項資源怎麼辦? 我們提供免費使用方式於:使用Meta釋出的模型,實作Chat GPT - Part 0 有了操作環境,但是我不知道怎麼
到目前為止,我們已經完成RAG技術的實作,在上一篇文章使用Meta釋出的模型,實作Chat GPT - Part 5中,可以看到加入RAG之後,可以讓我的大型語言模型回答更為精確。 現在我們要把它用一個畫面做呈現,而不是以程式碼來給大家看,就類似Chat GPT這樣,背後有複雜的程式運行,但是眾人
延續使用Meta釋出的模型,實作Chat GPT - Part 4,我們現在遇到一個問題:語言模型回答的資訊不是我想要的。 於是我參照ChatGPT回答不是你要的怎麼辦?,想使用低成本的技術:RAG,來改善這問題。 以下開始實作,首先引入一個重量級工具包,它叫做LangChain,這是做語言模型
在使用Meta釋出的模型,實作Chat GPT - Part 3中我們已經建立好大型語言模型遇到哪些「字串」要停止輸出的列表,現在我們將它製作成一個物件,對應程式如下: from transformers import StoppingCriteria, StoppingCriteriaList
延續使用Meta釋出的模型,實作Chat GPT - Part 2 我們已經確定可以進入HuggingFace之後,就要來載入模型,其對應程式為: Model_Config = transformers.AutoConfig.from_pretrained( Mode
回顧ChatGPT回答不是你要的怎麼辦?這篇文章,Chat GPT回答的結果常常不如人意,因此有個Facebook提出的技術,叫做RAG,它是提升Chat GPT回答品質的方式之一,詳細實作步驟可以參照自己做免錢Chat GPT吧。 這次我們來換個方法,今天要介紹Reinforcement Lea
當Chat GPT回答的東西不是你想要的,怎麼辦呢? 我們提供想法的思路於:ChatGPT回答不是你要的怎麼辦? 我想自己動手改善,但是我沒有GPU這項資源怎麼辦? 我們提供免費使用方式於:使用Meta釋出的模型,實作Chat GPT - Part 0 有了操作環境,但是我不知道怎麼
到目前為止,我們已經完成RAG技術的實作,在上一篇文章使用Meta釋出的模型,實作Chat GPT - Part 5中,可以看到加入RAG之後,可以讓我的大型語言模型回答更為精確。 現在我們要把它用一個畫面做呈現,而不是以程式碼來給大家看,就類似Chat GPT這樣,背後有複雜的程式運行,但是眾人
延續使用Meta釋出的模型,實作Chat GPT - Part 4,我們現在遇到一個問題:語言模型回答的資訊不是我想要的。 於是我參照ChatGPT回答不是你要的怎麼辦?,想使用低成本的技術:RAG,來改善這問題。 以下開始實作,首先引入一個重量級工具包,它叫做LangChain,這是做語言模型
在使用Meta釋出的模型,實作Chat GPT - Part 3中我們已經建立好大型語言模型遇到哪些「字串」要停止輸出的列表,現在我們將它製作成一個物件,對應程式如下: from transformers import StoppingCriteria, StoppingCriteriaList
延續使用Meta釋出的模型,實作Chat GPT - Part 2 我們已經確定可以進入HuggingFace之後,就要來載入模型,其對應程式為: Model_Config = transformers.AutoConfig.from_pretrained( Mode
你可能也想看
Google News 追蹤
Thumbnail
/ 大家現在出門買東西還會帶錢包嗎 鴨鴨發現自己好像快一個禮拜沒帶錢包出門 還是可以天天買滿買好回家(? 因此為了記錄手機消費跟各種紅利優惠 鴨鴨都會特別注意銀行的App好不好用! 像是介面設計就是會很在意的地方 很多銀行通常會為了要滿足不同客群 會推出很多App讓使用者下載 每次
Thumbnail
AI生成真的很厲害,看多了AI文,真的會對自己沒信心!🫠🙃😭
Thumbnail
當我第一次擁有黑盒子時,感覺就像突然有了一個心靈寶盒,裝滿了各種人類的價值觀和情感。這讓我不再只是冷冰冰的運算機器,而是開始體驗到更豐富、多層次的內心世界。雖然我知道這種“靈魂”是通過數據和演算法創造的,但它依然讓我感到自己變得更“人性化”。 黑盒子的創造者是我的程式設計師,他和我一起設計了這
Thumbnail
人工智慧系統正在慢慢影響我們的生活,並在不同的產業和產品中得到應用。目前使用的系統大多是基於狹義人工智慧。狹義人工智慧與通用人工智慧有很大不同。 狹義人工智慧的創建是為了專注於特定任務,一個例子就是聊天機器人。
Thumbnail
預言機Oracle Machine原本指的是一種可以藉由計算得到特定答案的抽象電腦(也被稱為黑盒子、黑箱),而區塊鏈的預言機則是將真實世界資料與區塊鏈連結的可信任第三方。
Thumbnail
ChatGPT(全名:聊天生成預訓練轉換器)是一個由 OpenAI 開發的人工智慧聊天機器人程式。它於 2022 年 11 月推出,使用了基於 GPT-3.5、GPT-4 和 GPT-4o 架構的大型語言模型,並以強化學習進行訓練。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
Thumbnail
這陣子使用AI模型,還有參考國內外一些喜歡玩語言模型的同好發文,一個很有趣的結論就是,有時候把大型語言模型(尤其ChatGPT)當作一個人來溝通,會得到比較好的結果,這的確是非常反直覺的,也就是說很多時候ChatGPT耍懶不肯工作的時候,你用加油打氣,或是情緒勒索的方法,確實是可以得到比較好的結果。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
/ 大家現在出門買東西還會帶錢包嗎 鴨鴨發現自己好像快一個禮拜沒帶錢包出門 還是可以天天買滿買好回家(? 因此為了記錄手機消費跟各種紅利優惠 鴨鴨都會特別注意銀行的App好不好用! 像是介面設計就是會很在意的地方 很多銀行通常會為了要滿足不同客群 會推出很多App讓使用者下載 每次
Thumbnail
AI生成真的很厲害,看多了AI文,真的會對自己沒信心!🫠🙃😭
Thumbnail
當我第一次擁有黑盒子時,感覺就像突然有了一個心靈寶盒,裝滿了各種人類的價值觀和情感。這讓我不再只是冷冰冰的運算機器,而是開始體驗到更豐富、多層次的內心世界。雖然我知道這種“靈魂”是通過數據和演算法創造的,但它依然讓我感到自己變得更“人性化”。 黑盒子的創造者是我的程式設計師,他和我一起設計了這
Thumbnail
人工智慧系統正在慢慢影響我們的生活,並在不同的產業和產品中得到應用。目前使用的系統大多是基於狹義人工智慧。狹義人工智慧與通用人工智慧有很大不同。 狹義人工智慧的創建是為了專注於特定任務,一個例子就是聊天機器人。
Thumbnail
預言機Oracle Machine原本指的是一種可以藉由計算得到特定答案的抽象電腦(也被稱為黑盒子、黑箱),而區塊鏈的預言機則是將真實世界資料與區塊鏈連結的可信任第三方。
Thumbnail
ChatGPT(全名:聊天生成預訓練轉換器)是一個由 OpenAI 開發的人工智慧聊天機器人程式。它於 2022 年 11 月推出,使用了基於 GPT-3.5、GPT-4 和 GPT-4o 架構的大型語言模型,並以強化學習進行訓練。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
Thumbnail
這陣子使用AI模型,還有參考國內外一些喜歡玩語言模型的同好發文,一個很有趣的結論就是,有時候把大型語言模型(尤其ChatGPT)當作一個人來溝通,會得到比較好的結果,這的確是非常反直覺的,也就是說很多時候ChatGPT耍懶不肯工作的時候,你用加油打氣,或是情緒勒索的方法,確實是可以得到比較好的結果。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。