AI說書 - 從0開始 - 299 | Subword Tokenizer 引言

更新於 發佈於 閱讀時間約 3 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


Transformer 模型是大規模的大型語言模型 (LLMs),模型的規模和它們執行的任務數量需要高效的 Tokenizer,Subword Tokenizer 是 LLMs 的最佳選擇,原因包括以下幾點:

  • 詞彙外 (Out-of-Vocabulary, OOV) 詞語:Subword Tokenizer 可以處理在訓練階段未出現的詞語 OOV,Tokenizer 會將 OOV 詞語拆解成 Transformer 模型可以處理的小單位
  • 詞彙優化:Subword Tokenizer 將序列分解為比句子和單詞 Tokenizer 更小的單位,從而優化詞彙表的大小
  • 形態靈活性:Subword Tokenizer 將詞語分解為更小的單位,這些單位可以與其他小單位進行泛化,從而加深模型理解語言的能力
  • 抗噪能力:即使單詞拼寫錯誤或包含錯別字,Subword Tokenizer 仍然可以捕捉並處理其含義
  • 多語言處理:Word-Level Tokenizer 與特定語言相關,而 Subword Tokenizer 則不受語言限制


Byte Pair Encoding (BPE) 和 WordPiece 是 Transformer 模型中常用的 Subword Tokenizer,理解這兩種 Subword Tokenizer 的原理將幫助你理解任何 Subword Tokenizer 的運作方式,雖然我們主要關注 BPE 和 WordPiece,但它們並不是唯一的 Subword Tokenizer,為了之後實作,我們先安裝以下工具:

!pip install transformers -qq
!pip install sentencepiece -qq


avatar-img
176會員
468內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝、AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示、AI說書 -
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 及 AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示,我們繼續
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 安裝的各種 Tokenizer,我們來展示其用處: Sentence Toke
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 模型通常使用 Byte-Pair Encoding (BPE) 和 WordPiece Tokenization,接著,我們將了解為什麼選擇 S
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 替換生僻字詞本身就是一個項目,這項工作是為特定任務和項目保留的,例如,假設公司預算可以支付建立航空知識庫的成本,在這種情況下,值得花時間查詢 Tokenized Dir
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 接著展示「pie」及「logic」兩詞之間的相似度計算結果: word1 = "pie" word2 = "logic" print("Similarity", s
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝、AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示、AI說書 -
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 及 AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示,我們繼續
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 安裝的各種 Tokenizer,我們來展示其用處: Sentence Toke
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 模型通常使用 Byte-Pair Encoding (BPE) 和 WordPiece Tokenization,接著,我們將了解為什麼選擇 S
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 替換生僻字詞本身就是一個項目,這項工作是為特定任務和項目保留的,例如,假設公司預算可以支付建立航空知識庫的成本,在這種情況下,值得花時間查詢 Tokenized Dir
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 接著展示「pie」及「logic」兩詞之間的相似度計算結果: word1 = "pie" word2 = "logic" print("Similarity", s
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 擁有先進的翻譯能力,能夠捕捉多種語言中單字序列的意思,在第四章中,我們將介紹一些關鍵的翻譯概念,並探討它們在 Google Trax、Googl
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 42中,見識了 Tokenizer 做的事情了,以下來羅列幾個要點: 它將原始文字轉成小寫 有可能將原始文字再進行切割 通常 T
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 中的 Attention 機制是 'Word-to-Word' 操作,抑或是 'Token-to-Token' 操作,白話來講就是:「對於句子中
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 已經在AI說書 - 從0開始 - 12以及AI說書 - 從0開始 - 13中見識到TPU的威力了,現在我們把參數放大到真實大型語言模型的規模,看看運算時間的等級。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 4中說Transformer的精髓就是考慮「字與字之間的配對關係」,我們稱其為Attention Layer,再搭配我們在機器學習
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 2,ChatGPT的根基是一種名為Transformer的Foundation Model,我們從Transformer的時間複雜度開始
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 0,我們從Transformer開始談起: ChatGPT的火紅使得Transformer架構也跟著成為主流,相關應用從Googl
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 擁有先進的翻譯能力,能夠捕捉多種語言中單字序列的意思,在第四章中,我們將介紹一些關鍵的翻譯概念,並探討它們在 Google Trax、Googl
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 42中,見識了 Tokenizer 做的事情了,以下來羅列幾個要點: 它將原始文字轉成小寫 有可能將原始文字再進行切割 通常 T
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 中的 Attention 機制是 'Word-to-Word' 操作,抑或是 'Token-to-Token' 操作,白話來講就是:「對於句子中
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 已經在AI說書 - 從0開始 - 12以及AI說書 - 從0開始 - 13中見識到TPU的威力了,現在我們把參數放大到真實大型語言模型的規模,看看運算時間的等級。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 4中說Transformer的精髓就是考慮「字與字之間的配對關係」,我們稱其為Attention Layer,再搭配我們在機器學習
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 2,ChatGPT的根基是一種名為Transformer的Foundation Model,我們從Transformer的時間複雜度開始
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 0,我們從Transformer開始談起: ChatGPT的火紅使得Transformer架構也跟著成為主流,相關應用從Googl