The Nature of Code閱讀心得與Python實作:Chap. 4 Particle Systems

閱讀時間約 1 分鐘

粒子系統(particle system)指的是,由許多微小粒子組成,呈現出模糊外觀的物體。粒子系統所表現出來的特性,可能會跟單一粒子所表現出來的特性截然不同,天空中由小水滴組成的雲,就是一個最常見的例子。

粒子系統已經被應用到如電玩、動畫、數位藝術、視覺特效等方面,用來模擬自然界中的許多現象,例如火、爆炸、火花、煙霧、雲、瀑布、泡泡、塵土等。透過控制單一粒子諸如起始位置、運動速度、壽命等性質,就可以製造出許多不同的視覺效果。

這一章的重點會放在探討利用物件導向技術實作粒子系統時,該採用什麼樣的程式架構、描述個別粒子和整個系統的資料該如何管理等方面。

avatar-img
15會員
131內容數
寫點東西自娛娛人
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
ysf的沙龍 的其他內容
這一節要模擬的是擺(pendulum)這個裝置中,構造最簡單、具有理想化性質的單擺(simple pendulum)。
我們曾經利用sin函數來模擬彈簧吊錘(bob)的運動,雖然這樣子的做法程式很容易寫,但是卻沒辦法模擬彈簧吊錘受到如風力、重力等環境中其他作用力的影響下,在空間中的運動狀況。要克服這樣子的問題,就不能再倚靠sin函數,而必須改用能夠用來計算彈簧彈力的虎克定律(Hooke's law)。
在x軸上依序取一些點,然後把這些點以及其對應的sin函數的值所構成的二維座標點畫出來時,就可以看到由這個sin函數所產生的像波一樣的圖案,也就是波型(wave pattern)。不同樣式的波型,可以用來設計生物的軀幹或肢體,也可以用來模擬像水這類柔軟的表面。
藉由設定振幅、頻率、週期等性質,我們可以模擬出真實世界中的振盪現象。其實,用稍微簡單一點的方式來處理,依舊可以得到相同的效果。
這一節談的是振盪(oscillation)。日常生活中,隨處都可見到振盪的現象。例如,彈奏弦樂器時,弦的振動、盪鞦韆時的來回擺動、音叉的振動、單擺的來回擺動、彈簧的振動等。除了這些眼睛看得到的之外,麥克風、交流電、收音機、手機等許許多多的電子產品,也都是利用振盪的原理來運作的。
除了直角座標系統外,極座標(polar coordinate)系統是另一種相當有用的座標系統。
這一節要模擬的是擺(pendulum)這個裝置中,構造最簡單、具有理想化性質的單擺(simple pendulum)。
我們曾經利用sin函數來模擬彈簧吊錘(bob)的運動,雖然這樣子的做法程式很容易寫,但是卻沒辦法模擬彈簧吊錘受到如風力、重力等環境中其他作用力的影響下,在空間中的運動狀況。要克服這樣子的問題,就不能再倚靠sin函數,而必須改用能夠用來計算彈簧彈力的虎克定律(Hooke's law)。
在x軸上依序取一些點,然後把這些點以及其對應的sin函數的值所構成的二維座標點畫出來時,就可以看到由這個sin函數所產生的像波一樣的圖案,也就是波型(wave pattern)。不同樣式的波型,可以用來設計生物的軀幹或肢體,也可以用來模擬像水這類柔軟的表面。
藉由設定振幅、頻率、週期等性質,我們可以模擬出真實世界中的振盪現象。其實,用稍微簡單一點的方式來處理,依舊可以得到相同的效果。
這一節談的是振盪(oscillation)。日常生活中,隨處都可見到振盪的現象。例如,彈奏弦樂器時,弦的振動、盪鞦韆時的來回擺動、音叉的振動、單擺的來回擺動、彈簧的振動等。除了這些眼睛看得到的之外,麥克風、交流電、收音機、手機等許許多多的電子產品,也都是利用振盪的原理來運作的。
除了直角座標系統外,極座標(polar coordinate)系統是另一種相當有用的座標系統。
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
到目前為止,我們所模擬的萬有引力,是一個物體吸引另一個物體,或者是一個物體吸引多個物體。然而,在真實世界中,每個物體都會互相吸引,所以在這一節中,就來把模擬的情境,擴展成多個物體互相吸引。
Thumbnail
模擬世界是我們寫程式造出來的,我們就是模擬世界的主宰,所以各種作用力要長什麼樣子、要怎麼個作用法,都由我們決定。不過,如果希望這些作用力看起來像真實世界的作用力一樣,那在寫程式的時候,套用這些作用力在真實世界中的物理公式,會是比較省時省力的做法。
在真實世界中有各式各樣的作用力影響著我們,那在模擬世界中呢?要怎麼在本來無一物的模擬世界中,製造出作用力呢?
到目前為止,為了簡化問題,我們都假設物體的質量是1。接下來,我們將移除這個假設,然後將完全符合牛頓第二運動定律的apply_force()方法,整合到Mover這個類別中。
介紹以物件導向的方式,以向量來實作物體運動的模擬程式。
Thumbnail
在物理的領域裏 不變的物質有著恆常的定律 於是乎 月球繞著地球轉 地球繞著太陽轉 太陽繞著銀河系   在化學的領域裏 物質隨著原子們的排列組合 形成了 形色多變銀河系 各有千秋太陽系 繽紛美麗的地球   在數學的領域裏 數字的跳躍翻轉變化萬千中 綜言是 正負平方開根
Thumbnail
這一節談的是向量的定義,以及如何運用向量來建立模擬物體運動時,關於位置和速度間的關係式。
這一章介紹向量(vector)這個在物理、工程等領域非常重要的數學工具,以及如何用它來模擬一些物理現象。
Thumbnail
●量子世界與量子電腦的基本概念   1.量子理論描述的是量子世界(微觀世界) ,而非宏觀世界。   2.量子世界(薛丁格方程式)只有在量子態(沒有外在干擾的狀態)下存在。   3.宏觀世界因其構成的微觀粒子(量子),經長期相互干擾,導致量子態消失, 故生是生死是死,不會存在薛丁格貓既是
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
到目前為止,我們所模擬的萬有引力,是一個物體吸引另一個物體,或者是一個物體吸引多個物體。然而,在真實世界中,每個物體都會互相吸引,所以在這一節中,就來把模擬的情境,擴展成多個物體互相吸引。
Thumbnail
模擬世界是我們寫程式造出來的,我們就是模擬世界的主宰,所以各種作用力要長什麼樣子、要怎麼個作用法,都由我們決定。不過,如果希望這些作用力看起來像真實世界的作用力一樣,那在寫程式的時候,套用這些作用力在真實世界中的物理公式,會是比較省時省力的做法。
在真實世界中有各式各樣的作用力影響著我們,那在模擬世界中呢?要怎麼在本來無一物的模擬世界中,製造出作用力呢?
到目前為止,為了簡化問題,我們都假設物體的質量是1。接下來,我們將移除這個假設,然後將完全符合牛頓第二運動定律的apply_force()方法,整合到Mover這個類別中。
介紹以物件導向的方式,以向量來實作物體運動的模擬程式。
Thumbnail
在物理的領域裏 不變的物質有著恆常的定律 於是乎 月球繞著地球轉 地球繞著太陽轉 太陽繞著銀河系   在化學的領域裏 物質隨著原子們的排列組合 形成了 形色多變銀河系 各有千秋太陽系 繽紛美麗的地球   在數學的領域裏 數字的跳躍翻轉變化萬千中 綜言是 正負平方開根
Thumbnail
這一節談的是向量的定義,以及如何運用向量來建立模擬物體運動時,關於位置和速度間的關係式。
這一章介紹向量(vector)這個在物理、工程等領域非常重要的數學工具,以及如何用它來模擬一些物理現象。
Thumbnail
●量子世界與量子電腦的基本概念   1.量子理論描述的是量子世界(微觀世界) ,而非宏觀世界。   2.量子世界(薛丁格方程式)只有在量子態(沒有外在干擾的狀態)下存在。   3.宏觀世界因其構成的微觀粒子(量子),經長期相互干擾,導致量子態消失, 故生是生死是死,不會存在薛丁格貓既是