付費限定

數學和語言(2)「推論」與「定理」

更新於 發佈於 閱讀時間約 3 分鐘
圖片來源:https://www.flickr.com/photos/30478819@N08/41163533141,作者:https://foto.wuestenigel.com/reading-magnifier/?utm_source=41163533141&utm_campaign=FlickrDescription&utm_medium=link。授權方式:CC 2.0
  數學是一門嚴謹的語言,數學家們在公理和定義的基礎上,發掘並證明一個又一個的定理;數學證明的過程,好比偵探辦案一樣。偵探要有比常人好的推理能力和語言能力,語言能力須超出常人,才能透過用字遣詞、其他學科的背景知識發覺字裡行間所隱藏的象徵與意義,最後找出真相。本篇文章延續上篇介紹的公理與定義,說明數學家證明定理的基本方法,並將其與語言作比較。
以行動支持創作者!付費即可解鎖
本篇內容共 1291 字、0 則留言,僅發佈於從生活看數學你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
119會員
31內容數
由於學校上課時間有限,老師礙於進度壓力,時常無法慢慢一步步地帶領學生思考和理解數學中的觀念,而是倉促講解完概念後,開始進入計算解題。然而數學不單是計算而已,數學真正的精髓卻是在於背後觀念中,邏輯的推演與歸納。也因此期盼透過本專題的數學科普文,能幫助讀者看見數學的美,並提升讀者的思考、推理邏輯能力。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Caspar的沙龍 的其他內容
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇。
  數學和人類溝通使用的語言十分相似,但卻常受人忽視。因為過度重視考試的解題技巧與速度,人們學了許久數學,不見得都能洞察數學和語文的相似性。但是,本篇文章將介紹讀者,數學可以視為世界上最精準的語言,這篇文章同時分享閱讀數學專業書籍時,如何抱著學習語言的心學習數學。這篇文章以輕鬆的方式讓讀者看見數學的
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
上篇先以電影橋段開頭,說明專有名詞的產生原因,與下篇則聚焦於生物和數學中專有名詞的功用,並說明如何教育專有名詞和嚴格的定義,以及錯誤教育方式可能導致的不良結果。 在這篇文章中,將聚焦於數學和生物的專有名詞與定義的功用。最後小結將探討我對於專有名詞、定義、科學素養的教育看法。
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
  上篇文章介紹物理學家如何定義瞬時速度,本篇文章將延續上回文章脈絡,帶領讀者從回顧瞬時速度的由來,一般化瞬時速度的定義,最後引入導數和可微分的的定義,說明導數、瞬間變化率、可微分,牽涉到同一極限的觀念,讓讀者由現實世界逐步走入抽象世界。
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇。
  數學和人類溝通使用的語言十分相似,但卻常受人忽視。因為過度重視考試的解題技巧與速度,人們學了許久數學,不見得都能洞察數學和語文的相似性。但是,本篇文章將介紹讀者,數學可以視為世界上最精準的語言,這篇文章同時分享閱讀數學專業書籍時,如何抱著學習語言的心學習數學。這篇文章以輕鬆的方式讓讀者看見數學的
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
上篇先以電影橋段開頭,說明專有名詞的產生原因,與下篇則聚焦於生物和數學中專有名詞的功用,並說明如何教育專有名詞和嚴格的定義,以及錯誤教育方式可能導致的不良結果。 在這篇文章中,將聚焦於數學和生物的專有名詞與定義的功用。最後小結將探討我對於專有名詞、定義、科學素養的教育看法。
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
  上篇文章介紹物理學家如何定義瞬時速度,本篇文章將延續上回文章脈絡,帶領讀者從回顧瞬時速度的由來,一般化瞬時速度的定義,最後引入導數和可微分的的定義,說明導數、瞬間變化率、可微分,牽涉到同一極限的觀念,讓讀者由現實世界逐步走入抽象世界。
你可能也想看
Google News 追蹤
Thumbnail
大家好,我是woody,是一名料理創作者,非常努力地在嘗試將複雜的料理簡單化,讓大家也可以體驗到料理的樂趣而我也非常享受料理的過程,今天想跟大家聊聊,除了料理本身,料理創作背後的成本。
Thumbnail
哈囉~很久沒跟各位自我介紹一下了~ 大家好~我是爺恩 我是一名圖文插畫家,有追蹤我一段時間的應該有發現爺恩這個品牌經營了好像.....快五年了(汗)時間過得真快!隨著時間過去,創作這件事好像變得更忙碌了,也很開心跟很多厲害的創作者以及廠商互相合作幫忙,還有最重要的是大家的支持與陪伴🥹。  
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
如果是來自比較數學與理論的學科, 尤其研究對象是人群的學科, 幾乎不可能自己重做一次實驗, 看看這些數學理論「是不是實際上好用」。 我那時候就體會到, 數學只是一種空中樓閣, 我們還需要有具體的實驗數據, 來把數學與世界接地。 而什麼領域既能有數學理論,
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 九 亞里士多德的語法觀點有其邏輯上的需要。他的詞項邏輯 (term logic)52 處理的都是屬於後人稱作「直言命題」的句式。 撇開量詞不談,直言命題可以簡化為一個基本句式﹕主語 + 謂語
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 七 「概念」很可能是歐洲哲學史中最常用的其中一個語詞,就好像數學工作者的「數」,但概念總是作為一種心智建構提出或使用,對弗雷格要創建的新邏輯 —— 即以客存事物為對象的新邏輯 —— 來說,它可以
Thumbnail
1.0 從函數到函算語法 1.3 弗雷格的函數概念 三 弗雷格認為這樣的一個定義 —— 即李善蘭從德摩根借來的函數定義 —— 不能接受,因為它「沒有區別外型與內容﹑記號與所記 ...」43。美國邏輯學家奎因的《數理邏輯》(Mathematical Logic 1940) 在哲學和邏輯的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 四 公元1887年,德國數學家理查德‧戴德金 (Ri
我借用Kac一句精彩簡潔的話,來作為本文結論:「在數學中,邏輯是一種牢固的制約,只能提供『不可避免性』的結論,但是『驚奇』的要素必須來自邏輯的外部,透過想像力與洞察得到。」
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 三 在柏拉圖的影嚮下,亞里士多德的詞項邏輯 (term logic) 只處理一種句式,就是主語-謂語結構的句式。他的邏輯提出了一個有的效論辯理論,稱為「συλλογισμος」,嚴復 (1854-1921) 在節譯約翰•史都華•密爾 (Joh
Thumbnail
1. 凡所有相皆是虛妄,若見諸相非相,即見如來 2. 能量看不到,卻統籌物理世界(形而上統籌形而下) 3. 數學與物理的不同:數學「定理」:絕對真理,不因時空轉換;物理「定律」:找到自然背後的律,而非證明 4. 數學的本質:建立在不能再問的「公理」上 5. 歐式平
Thumbnail
哲學的思考方法為,一假設問題的提出,然後再藉由論證的方式證成一預設的概念,最後獲得一個解答、一個立場、一個理論。不管是哲學理論或科學理論,都共同面對一個問題─理論永遠只反映事實的某個片段而已;因為形成理論的過程,是一個將複雜問題「簡化」的過程。哲學方法有沒有可能反應真實的複雜呢?當哲學能夠反
Thumbnail
本章說明瞭在學習過程中,必須要兼聽不同理論,並且具有自我反駁的能力。同時提到了每個理論都有其前提,重要性也是不可忽視的。
Thumbnail
大家好,我是woody,是一名料理創作者,非常努力地在嘗試將複雜的料理簡單化,讓大家也可以體驗到料理的樂趣而我也非常享受料理的過程,今天想跟大家聊聊,除了料理本身,料理創作背後的成本。
Thumbnail
哈囉~很久沒跟各位自我介紹一下了~ 大家好~我是爺恩 我是一名圖文插畫家,有追蹤我一段時間的應該有發現爺恩這個品牌經營了好像.....快五年了(汗)時間過得真快!隨著時間過去,創作這件事好像變得更忙碌了,也很開心跟很多厲害的創作者以及廠商互相合作幫忙,還有最重要的是大家的支持與陪伴🥹。  
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
如果是來自比較數學與理論的學科, 尤其研究對象是人群的學科, 幾乎不可能自己重做一次實驗, 看看這些數學理論「是不是實際上好用」。 我那時候就體會到, 數學只是一種空中樓閣, 我們還需要有具體的實驗數據, 來把數學與世界接地。 而什麼領域既能有數學理論,
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 九 亞里士多德的語法觀點有其邏輯上的需要。他的詞項邏輯 (term logic)52 處理的都是屬於後人稱作「直言命題」的句式。 撇開量詞不談,直言命題可以簡化為一個基本句式﹕主語 + 謂語
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 七 「概念」很可能是歐洲哲學史中最常用的其中一個語詞,就好像數學工作者的「數」,但概念總是作為一種心智建構提出或使用,對弗雷格要創建的新邏輯 —— 即以客存事物為對象的新邏輯 —— 來說,它可以
Thumbnail
1.0 從函數到函算語法 1.3 弗雷格的函數概念 三 弗雷格認為這樣的一個定義 —— 即李善蘭從德摩根借來的函數定義 —— 不能接受,因為它「沒有區別外型與內容﹑記號與所記 ...」43。美國邏輯學家奎因的《數理邏輯》(Mathematical Logic 1940) 在哲學和邏輯的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 四 公元1887年,德國數學家理查德‧戴德金 (Ri
我借用Kac一句精彩簡潔的話,來作為本文結論:「在數學中,邏輯是一種牢固的制約,只能提供『不可避免性』的結論,但是『驚奇』的要素必須來自邏輯的外部,透過想像力與洞察得到。」
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 三 在柏拉圖的影嚮下,亞里士多德的詞項邏輯 (term logic) 只處理一種句式,就是主語-謂語結構的句式。他的邏輯提出了一個有的效論辯理論,稱為「συλλογισμος」,嚴復 (1854-1921) 在節譯約翰•史都華•密爾 (Joh
Thumbnail
1. 凡所有相皆是虛妄,若見諸相非相,即見如來 2. 能量看不到,卻統籌物理世界(形而上統籌形而下) 3. 數學與物理的不同:數學「定理」:絕對真理,不因時空轉換;物理「定律」:找到自然背後的律,而非證明 4. 數學的本質:建立在不能再問的「公理」上 5. 歐式平
Thumbnail
哲學的思考方法為,一假設問題的提出,然後再藉由論證的方式證成一預設的概念,最後獲得一個解答、一個立場、一個理論。不管是哲學理論或科學理論,都共同面對一個問題─理論永遠只反映事實的某個片段而已;因為形成理論的過程,是一個將複雜問題「簡化」的過程。哲學方法有沒有可能反應真實的複雜呢?當哲學能夠反
Thumbnail
本章說明瞭在學習過程中,必須要兼聽不同理論,並且具有自我反駁的能力。同時提到了每個理論都有其前提,重要性也是不可忽視的。