從生活認識微積分(十四):函數微分的幾何意義(3)

閱讀時間約 2 分鐘
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。

(四)連續函數的切線

   有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由上篇文章介紹,我們得知這兩點會形成一條割線,橫切函數圖形。現在若要求連續函數某一定點上的定點A(x1,f(x1))之切線,要如何尋找這條切線呢?答案是透過割線逼近來尋找切線。
  具體的作法如下,我們可以先找另外一個相異於A的點B(x2, f(x2)),根據上篇文章的定義,我們知道AB是一條割線。實際上,當另一點B越來越靠近A時,就會越接近A點的切線。由於這個敘述不夠明確,我們可以將這個不清楚的幾何敘述,轉回成代數極限的概念,以便讓敘述更加清晰。
   轉換回代數的第一步驟,同樣是先考慮直線斜率的表達方式。根據斜率定義,要找AB兩點形成直線的斜率,就是(f(x2)-f(x1))/(x2-x1),是先前一再探討的概念:
在座標平面上曲兩個點A(x1, y1)B(x2, y2),AB兩點間的斜率為:
  我們得知當B點越來越靠近A時,無論從左或又,AB所形成之割線若能越來越逼近一條通過A點的線,這一條通過A點的線就是過A的切線。這是我們一開始所提出逼近(趨近)的觀念,不妨用圖形表示如下:
由於B是動點,往A靠近。在繪圖軟體中我們將由左邊逐步移動的B點軌跡用b1、b2表示;右邊的軌跡則用β1、β2表示
  以上函數圖形是以下多項式函數圖形為例。
  以上的觀念也代表,隨著B點靠近A點,AB割線的斜率會越來越接近A點切線。這是高中的直線觀念,要確認兩條直線相等,要確認直線的斜率(代表方向、變化率)相等,且通過同一點。此時可以再更近一步論述,其實數學中切線的定義是當B趨近於A點時,AB割線會趨近於一條通過A的線,這條線即為過A點的切線,撇除垂直沒有斜率的情況,若割線和切線的斜率皆存在,以上的論述也可以修改如下:因為B趨近於A點,又AB兩點皆在函數f上,分別為A(x1, f(x1))B(x2, f(x2)),故B趨近於A點可改說x2趨近於x1,則此時若AB割線斜率的極限若存在,就是切線斜率m。  
  下文將說明割線、切線斜率如何與先前的觀念連結。

聯絡資訊 若您有有意與我合作或有任何建議,可以聯絡以下email,我會定時回信:[email protected] 本專題的臉書粉絲團(架設中)https://bit.ly/33FOgsI

如果您覺得這篇文章對您有幫助,別忘記替我按讚喔!
您的讚將是支持我的寫作動力。
即將進入廣告,捲動後可繼續閱讀
為什麼會看到廣告
117會員
31內容數
由於學校上課時間有限,老師礙於進度壓力,時常無法慢慢一步步地帶領學生思考和理解數學中的觀念,而是倉促講解完概念後,開始進入計算解題。然而數學不單是計算而已,數學真正的精髓卻是在於背後觀念中,邏輯的推演與歸納。也因此期盼透過本專題的數學科普文,能幫助讀者看見數學的美,並提升讀者的思考、推理邏輯能力。
留言0
查看全部
發表第一個留言支持創作者!
Caspar的沙龍 的其他內容
  數學是一門嚴謹的語言,數學家們在公理和定義的基礎上,發掘並證明一個又一個的定理;數學證明的過程,好比偵探辦案一樣。偵探要有比常人好的推理能力和語言能力,語言能力須超出常人,才能透過用字遣詞、其他學科的背景知識發覺字裡行間所隱藏的象徵與意義,最後找出真相。本篇文章延續上篇介紹的公理與定義,說明數
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇。
  數學和人類溝通使用的語言十分相似,但卻常受人忽視。因為過度重視考試的解題技巧與速度,人們學了許久數學,不見得都能洞察數學和語文的相似性。但是,本篇文章將介紹讀者,數學可以視為世界上最精準的語言,這篇文章同時分享閱讀數學專業書籍時,如何抱著學習語言的心學習數學。這篇文章以輕鬆的方式讓讀者看見數學的
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
上篇先以電影橋段開頭,說明專有名詞的產生原因,與下篇則聚焦於生物和數學中專有名詞的功用,並說明如何教育專有名詞和嚴格的定義,以及錯誤教育方式可能導致的不良結果。 在這篇文章中,將聚焦於數學和生物的專有名詞與定義的功用。最後小結將探討我對於專有名詞、定義、科學素養的教育看法。
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
  數學是一門嚴謹的語言,數學家們在公理和定義的基礎上,發掘並證明一個又一個的定理;數學證明的過程,好比偵探辦案一樣。偵探要有比常人好的推理能力和語言能力,語言能力須超出常人,才能透過用字遣詞、其他學科的背景知識發覺字裡行間所隱藏的象徵與意義,最後找出真相。本篇文章延續上篇介紹的公理與定義,說明數
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇。
  數學和人類溝通使用的語言十分相似,但卻常受人忽視。因為過度重視考試的解題技巧與速度,人們學了許久數學,不見得都能洞察數學和語文的相似性。但是,本篇文章將介紹讀者,數學可以視為世界上最精準的語言,這篇文章同時分享閱讀數學專業書籍時,如何抱著學習語言的心學習數學。這篇文章以輕鬆的方式讓讀者看見數學的
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
上篇先以電影橋段開頭,說明專有名詞的產生原因,與下篇則聚焦於生物和數學中專有名詞的功用,並說明如何教育專有名詞和嚴格的定義,以及錯誤教育方式可能導致的不良結果。 在這篇文章中,將聚焦於數學和生物的專有名詞與定義的功用。最後小結將探討我對於專有名詞、定義、科學素養的教育看法。
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
你可能也想看
Google News 追蹤
Thumbnail
接下來第二部分我們持續討論美國總統大選如何佈局, 以及選前一週到年底的操作策略建議 分析兩位候選人政策利多/ 利空的板塊和股票
Thumbnail
🤔為什麼團長的能力是死亡筆記本? 🤔為什麼像是死亡筆記本呢? 🤨作者巧思-讓妮翁死亡合理的幾個伏筆
Thumbnail
本所許惠菁律師主持央廣【生活有辦法】, 「基泰建設」在施工的過程中,造成大直街94巷的房屋傾斜和下陷! 台北市長蔣萬安在媒體前公開說:「北市府會書面遞狀、聲請假扣押來確保住戶權益,要求基泰建設負起責任。」 到底什麼是假扣押?本週許律師將就基泰案進一步與聽眾朋友討論假扣押的概念。
Thumbnail
你認識自己嗎?你了解自己嗎? 你常重複做出相同的行為事後才後悔;然而,下一次發生類似的情形卻又做出同樣的反應,你百思不得其解,你明明不希望發生這樣的結果,為什麼卻又再次陷入同樣的情境中呢?
Thumbnail
生活有辦法:【生活話題】從奧運主題曲〈歡樂飲酒歌〉認識智慧財產權 本所許惠菁律師主持央廣【生活有辦法】, 由印刻出版社出版,蘭天律師所寫的《〈歡樂飲酒歌〉國際侵權訴訟案:台灣原住民vs.亞特蘭大奧運》。 本書詳細的紀錄了在1996年舉辦的奧運在未事先告知情況下,使用了臺灣阿美族郭英男老師演
Thumbnail
今年夏天真的要熱瘋了,我沒想到基隆的體感溫度會到了42度加上孕婦怕熱體質完全只能躲室內開冷氣阿!你也跟我一樣熱到要融化了嗎?這次要來講全球最大的飲料公司。 公司名稱:Coca-Cola Co 股票代碼:KO 成立年份:1886年 一家公司能存活超過100年真的不容易啊~還活了137年!
Thumbnail
有沒有人,和我一樣很愛減肥。 減肥這件事,好像永遠都甩不掉,一直跟著我。 在以前,所謂的「減肥計畫」就是斷食,那時每天都餓到只想叫天叫地,肚子不停的咕嚕咕嚕叫,還是只能忍住,唯一的優點就是我很有毅力。 沒有什麼事,是做不到的,肚子,加油! 每一年我都要經過,「肚子再加油」的日子。雖然每次執行減肥時,
Thumbnail
嗨~我是漫半拍莎莉,歡迎來到美股集點卡。 你收集了多少家美股呢? 今天我們來收集限時買一送一的星巴克。 【你愛喝咖啡嗎?】 上班的時候是不是都想來一杯咖啡才能提起精神呢? 如果是咖啡控的你,想必一定喝過星巴克的咖啡或是你在辦公室裡,常常會聽到同事們說:「今天星巴克限時買一送一耶~要不要一起買?」 又
Thumbnail
嗨~我是漫半拍莎莉,歡迎來到美股集點卡。 你收集了多少家美股呢? 今天來收集我們從小吃到大的麥當勞。 i'm lovin' it i'm lovin' it是2003年全球性廣告活動,大家一定有聽過這朗朗上口的口號,這英文版也是麥當勞的註冊商標。 【記憶中的麥當勞】 小時候的麥當勞快樂兒童餐都會贈送
Thumbnail
【歷史上的今天】從舊金山和約中重新認識臺灣 本所許惠菁律師主持央廣【生活有辦法】,節目中我們要一起搭乘時光機回到歷史上的2022年4月28日,看看70年前的4月28日,世界發生了什麼重要的事? 舊金山和約 在舊金山和約簽訂滿70年後的今天,許多學者也提出「臺灣主權未定論」的議題探討。 本集重點
Thumbnail
📷 從我家看台灣人口結構改變 民國39-54年2次世界大戰剛結束,大家回到家鄉,除了努力工作,就拼命生小孩。生育數是台灣有史以來最高峰,稱為戰後嬰兒潮,每年生40幾萬個新生兒:我爸有7個兄弟姊妹。 民國70年我弟弟出生時,每年新生兒已經降到30萬,每年少10萬的新生兒,幅度蠻大的。
Thumbnail
接下來第二部分我們持續討論美國總統大選如何佈局, 以及選前一週到年底的操作策略建議 分析兩位候選人政策利多/ 利空的板塊和股票
Thumbnail
🤔為什麼團長的能力是死亡筆記本? 🤔為什麼像是死亡筆記本呢? 🤨作者巧思-讓妮翁死亡合理的幾個伏筆
Thumbnail
本所許惠菁律師主持央廣【生活有辦法】, 「基泰建設」在施工的過程中,造成大直街94巷的房屋傾斜和下陷! 台北市長蔣萬安在媒體前公開說:「北市府會書面遞狀、聲請假扣押來確保住戶權益,要求基泰建設負起責任。」 到底什麼是假扣押?本週許律師將就基泰案進一步與聽眾朋友討論假扣押的概念。
Thumbnail
你認識自己嗎?你了解自己嗎? 你常重複做出相同的行為事後才後悔;然而,下一次發生類似的情形卻又做出同樣的反應,你百思不得其解,你明明不希望發生這樣的結果,為什麼卻又再次陷入同樣的情境中呢?
Thumbnail
生活有辦法:【生活話題】從奧運主題曲〈歡樂飲酒歌〉認識智慧財產權 本所許惠菁律師主持央廣【生活有辦法】, 由印刻出版社出版,蘭天律師所寫的《〈歡樂飲酒歌〉國際侵權訴訟案:台灣原住民vs.亞特蘭大奧運》。 本書詳細的紀錄了在1996年舉辦的奧運在未事先告知情況下,使用了臺灣阿美族郭英男老師演
Thumbnail
今年夏天真的要熱瘋了,我沒想到基隆的體感溫度會到了42度加上孕婦怕熱體質完全只能躲室內開冷氣阿!你也跟我一樣熱到要融化了嗎?這次要來講全球最大的飲料公司。 公司名稱:Coca-Cola Co 股票代碼:KO 成立年份:1886年 一家公司能存活超過100年真的不容易啊~還活了137年!
Thumbnail
有沒有人,和我一樣很愛減肥。 減肥這件事,好像永遠都甩不掉,一直跟著我。 在以前,所謂的「減肥計畫」就是斷食,那時每天都餓到只想叫天叫地,肚子不停的咕嚕咕嚕叫,還是只能忍住,唯一的優點就是我很有毅力。 沒有什麼事,是做不到的,肚子,加油! 每一年我都要經過,「肚子再加油」的日子。雖然每次執行減肥時,
Thumbnail
嗨~我是漫半拍莎莉,歡迎來到美股集點卡。 你收集了多少家美股呢? 今天我們來收集限時買一送一的星巴克。 【你愛喝咖啡嗎?】 上班的時候是不是都想來一杯咖啡才能提起精神呢? 如果是咖啡控的你,想必一定喝過星巴克的咖啡或是你在辦公室裡,常常會聽到同事們說:「今天星巴克限時買一送一耶~要不要一起買?」 又
Thumbnail
嗨~我是漫半拍莎莉,歡迎來到美股集點卡。 你收集了多少家美股呢? 今天來收集我們從小吃到大的麥當勞。 i'm lovin' it i'm lovin' it是2003年全球性廣告活動,大家一定有聽過這朗朗上口的口號,這英文版也是麥當勞的註冊商標。 【記憶中的麥當勞】 小時候的麥當勞快樂兒童餐都會贈送
Thumbnail
【歷史上的今天】從舊金山和約中重新認識臺灣 本所許惠菁律師主持央廣【生活有辦法】,節目中我們要一起搭乘時光機回到歷史上的2022年4月28日,看看70年前的4月28日,世界發生了什麼重要的事? 舊金山和約 在舊金山和約簽訂滿70年後的今天,許多學者也提出「臺灣主權未定論」的議題探討。 本集重點
Thumbnail
📷 從我家看台灣人口結構改變 民國39-54年2次世界大戰剛結束,大家回到家鄉,除了努力工作,就拼命生小孩。生育數是台灣有史以來最高峰,稱為戰後嬰兒潮,每年生40幾萬個新生兒:我爸有7個兄弟姊妹。 民國70年我弟弟出生時,每年新生兒已經降到30萬,每年少10萬的新生兒,幅度蠻大的。