付費限定

從生活認識微積分(十三):函數微分的幾何意義(2)

更新於 發佈於 閱讀時間約 2 分鐘
raw-image
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇

(三)連續函數的割線

   在思考函數微分的幾何意義前,本文先引入「割線的概念」。割線的英文是「secant」,英文secant實際上來自於法文「sécante」,而法文「sécante」的起源是拉丁文:「secare」,意思就是剪、切......。割線可謂是名副其實,因為一條割線看起來就像是替函數圖形畫上一刀一樣。讀者可想像麵包師傅或廚師劃上一刀,將食材切開的樣子。

以行動支持創作者!付費即可解鎖
本篇內容共 1114 字、0 則留言,僅發佈於從生活看數學你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
Caspar的沙龍
121會員
31內容數
由於學校上課時間有限,老師礙於進度壓力,時常無法慢慢一步步地帶領學生思考和理解數學中的觀念,而是倉促講解完概念後,開始進入計算解題。然而數學不單是計算而已,數學真正的精髓卻是在於背後觀念中,邏輯的推演與歸納。也因此期盼透過本專題的數學科普文,能幫助讀者看見數學的美,並提升讀者的思考、推理邏輯能力。
Caspar的沙龍的其他內容
2020/01/20
  各位「從生活中看數學」讀者好,感謝這一年來大家的支持與閱讀。由於文章撰寫時間耗時較多,長文主要在暑假更新為主,所以未來除了文章撰寫之外,會以影音呈現數學的觀念,每個禮拜會定時更新。 我的Youtube頻道: https://www.youtube.com/channel/UCnJW-b2uW
Thumbnail
2020/01/20
  各位「從生活中看數學」讀者好,感謝這一年來大家的支持與閱讀。由於文章撰寫時間耗時較多,長文主要在暑假更新為主,所以未來除了文章撰寫之外,會以影音呈現數學的觀念,每個禮拜會定時更新。 我的Youtube頻道: https://www.youtube.com/channel/UCnJW-b2uW
Thumbnail
2019/08/21
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
2019/08/21
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
2019/08/17
  數學是一門嚴謹的語言,數學家們在公理和定義的基礎上,發掘並證明一個又一個的定理;數學證明的過程,好比偵探辦案一樣。偵探要有比常人好的推理能力和語言能力,語言能力須超出常人,才能透過用字遣詞、其他學科的背景知識發覺字裡行間所隱藏的象徵與意義,最後找出真相。本篇文章延續上篇介紹的公理與定義,說明數
Thumbnail
2019/08/17
  數學是一門嚴謹的語言,數學家們在公理和定義的基礎上,發掘並證明一個又一個的定理;數學證明的過程,好比偵探辦案一樣。偵探要有比常人好的推理能力和語言能力,語言能力須超出常人,才能透過用字遣詞、其他學科的背景知識發覺字裡行間所隱藏的象徵與意義,最後找出真相。本篇文章延續上篇介紹的公理與定義,說明數
Thumbnail
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
1.1 函數與圖形 定義域、對應域,每一元素只能對應一個函數值 (即不能一對多) 多項式函數、三角、指對 a>0,拋物線開口向上 a<0,拋物線開口向下 1.2 連續函數與極限 極限(Limit): limx→ ∞an = L f(x)在x=a是連續的,條件有三: e=2.718
Thumbnail
1.1 函數與圖形 定義域、對應域,每一元素只能對應一個函數值 (即不能一對多) 多項式函數、三角、指對 a>0,拋物線開口向上 a<0,拋物線開口向下 1.2 連續函數與極限 極限(Limit): limx→ ∞an = L f(x)在x=a是連續的,條件有三: e=2.718
Thumbnail
有關於「數與式」的內容,我們已經在上一篇文章有所討論,這篇文章,我們會探討108課綱第二章的兩個問題其中之一: 「直線與圓」搬至高一課程的影響。
Thumbnail
有關於「數與式」的內容,我們已經在上一篇文章有所討論,這篇文章,我們會探討108課綱第二章的兩個問題其中之一: 「直線與圓」搬至高一課程的影響。
Thumbnail
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇。
Thumbnail
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
Thumbnail
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
Thumbnail
這是微積分科普系列文章的第二篇,本文將以生活情境向你解釋「靠近」的概念,了解趨近的含義後,再說明如何用數學語言表示極限,並讓讀者透過直覺的函數圖形和計算,了解函數極限的意義,最後引導讀者思考、提出質疑,更加嚴格的函數極限定義,應符合哪些要求。
Thumbnail
這是微積分科普系列文章的第二篇,本文將以生活情境向你解釋「靠近」的概念,了解趨近的含義後,再說明如何用數學語言表示極限,並讓讀者透過直覺的函數圖形和計算,了解函數極限的意義,最後引導讀者思考、提出質疑,更加嚴格的函數極限定義,應符合哪些要求。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News