Photo by Magda Ehlers from Pexels,原始連結:https://www.pexels.com/photo/slice-of-bread-1586947/,授權免費使用
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇。
(三)連續函數的割線
在思考函數微分的幾何意義前,本文先引入「割線的概念」。割線的英文是「secant」,英文secant實際上來自於法文「sécante」,而法文「sécante」的起源是拉丁文:「secare」,意思就是剪、切......。割線可謂是名副其實,因為一條割線看起來就像是替函數圖形畫上一刀一樣。讀者可想像麵包師傅或廚師劃上一刀,將食材切開的樣子。