付費限定

從生活認識微積分(十三):函數微分的幾何意義(2)

更新於 發佈於 閱讀時間約 2 分鐘
Photo by Magda Ehlers from Pexels,原始連結:https://www.pexels.com/photo/slice-of-bread-1586947/,授權免費使用
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇

(三)連續函數的割線

   在思考函數微分的幾何意義前,本文先引入「割線的概念」。割線的英文是「secant」,英文secant實際上來自於法文「sécante」,而法文「sécante」的起源是拉丁文:「secare」,意思就是剪、切......。割線可謂是名副其實,因為一條割線看起來就像是替函數圖形畫上一刀一樣。讀者可想像麵包師傅或廚師劃上一刀,將食材切開的樣子。
以行動支持創作者!付費即可解鎖
本篇內容共 1114 字、0 則留言,僅發佈於從生活看數學你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
119會員
31內容數
由於學校上課時間有限,老師礙於進度壓力,時常無法慢慢一步步地帶領學生思考和理解數學中的觀念,而是倉促講解完概念後,開始進入計算解題。然而數學不單是計算而已,數學真正的精髓卻是在於背後觀念中,邏輯的推演與歸納。也因此期盼透過本專題的數學科普文,能幫助讀者看見數學的美,並提升讀者的思考、推理邏輯能力。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Caspar的沙龍 的其他內容
  數學和人類溝通使用的語言十分相似,但卻常受人忽視。因為過度重視考試的解題技巧與速度,人們學了許久數學,不見得都能洞察數學和語文的相似性。但是,本篇文章將介紹讀者,數學可以視為世界上最精準的語言,這篇文章同時分享閱讀數學專業書籍時,如何抱著學習語言的心學習數學。這篇文章以輕鬆的方式讓讀者看見數學的
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
上篇先以電影橋段開頭,說明專有名詞的產生原因,與下篇則聚焦於生物和數學中專有名詞的功用,並說明如何教育專有名詞和嚴格的定義,以及錯誤教育方式可能導致的不良結果。 在這篇文章中,將聚焦於數學和生物的專有名詞與定義的功用。最後小結將探討我對於專有名詞、定義、科學素養的教育看法。
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
  上篇文章介紹物理學家如何定義瞬時速度,本篇文章將延續上回文章脈絡,帶領讀者從回顧瞬時速度的由來,一般化瞬時速度的定義,最後引入導數和可微分的的定義,說明導數、瞬間變化率、可微分,牽涉到同一極限的觀念,讓讀者由現實世界逐步走入抽象世界。
本篇文章延續先前主軸,且分上、下兩篇。上篇將主旨聚焦於單一例子:「瞬時速度」,透過討論貓咪奔跑之實例,複習並計算平均速度之定義,在說明瞬時速度的觀念,最後進一步鋪成下篇的抽象微分概念。
  數學和人類溝通使用的語言十分相似,但卻常受人忽視。因為過度重視考試的解題技巧與速度,人們學了許久數學,不見得都能洞察數學和語文的相似性。但是,本篇文章將介紹讀者,數學可以視為世界上最精準的語言,這篇文章同時分享閱讀數學專業書籍時,如何抱著學習語言的心學習數學。這篇文章以輕鬆的方式讓讀者看見數學的
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
上篇先以電影橋段開頭,說明專有名詞的產生原因,與下篇則聚焦於生物和數學中專有名詞的功用,並說明如何教育專有名詞和嚴格的定義,以及錯誤教育方式可能導致的不良結果。 在這篇文章中,將聚焦於數學和生物的專有名詞與定義的功用。最後小結將探討我對於專有名詞、定義、科學素養的教育看法。
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
  上篇文章介紹物理學家如何定義瞬時速度,本篇文章將延續上回文章脈絡,帶領讀者從回顧瞬時速度的由來,一般化瞬時速度的定義,最後引入導數和可微分的的定義,說明導數、瞬間變化率、可微分,牽涉到同一極限的觀念,讓讀者由現實世界逐步走入抽象世界。
本篇文章延續先前主軸,且分上、下兩篇。上篇將主旨聚焦於單一例子:「瞬時速度」,透過討論貓咪奔跑之實例,複習並計算平均速度之定義,在說明瞬時速度的觀念,最後進一步鋪成下篇的抽象微分概念。
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 八 在關於振動弦通解的這場論爭之中,函數概念默默地向兩個方面推前了一大步。 一方面,特朗貝爾和歐拉等擴大了
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動  七 雖然論爭沒有得出任何定論,但對函數概念的演化卻影嚮頗深。 在這次歷時多年的論爭中,函數概念得以擴大而包括
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 四 牛頓的「流數」不久便淡出歷史的舞台,後來的數學工作者選擇了萊布尼茲比較抽象的「函數」。 公元1673年,萊布尼茲在一篇名為〈觸線
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 一 因此打從輪廓的浮現,萌牙狀態的函數概念是一個幾何圖象。 有趣的是,兩個世紀之後,即公元十六世紀,歐洲文藝復興如日中天,法國數學家及哲學家勒內‧笛卡兒承襲
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 八 在關於振動弦通解的這場論爭之中,函數概念默默地向兩個方面推前了一大步。 一方面,特朗貝爾和歐拉等擴大了
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動  七 雖然論爭沒有得出任何定論,但對函數概念的演化卻影嚮頗深。 在這次歷時多年的論爭中,函數概念得以擴大而包括
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 四 牛頓的「流數」不久便淡出歷史的舞台,後來的數學工作者選擇了萊布尼茲比較抽象的「函數」。 公元1673年,萊布尼茲在一篇名為〈觸線
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 一 因此打從輪廓的浮現,萌牙狀態的函數概念是一個幾何圖象。 有趣的是,兩個世紀之後,即公元十六世紀,歐洲文藝復興如日中天,法國數學家及哲學家勒內‧笛卡兒承襲