別讓數字成為停止思考的藉口 :讀Sanne Blauw的《數字偏見》

更新於 發佈於 閱讀時間約 10 分鐘
作者:桑妮.布勞
原文作者:Sanne Blauw
譯者: 林曉欽
出版社:今周刊
出版日期:2021/12/30

對數字產生錯誤期待,並錯誤的認為數字的定義就是客觀的,其實是非常危險的想法。數字因而成為停止思考的藉口。如果我們希望認真看待數字,就應該承認數字的極限:數字中藏著價值判斷,並非萬物都能用數字計算,而數字不能傾訴許許多多的真相。數字不是真相,而是協助我們理解真相。


🔢🔢🔢

我們生活在一個對數字極端仰賴的時代。小時候還在學校求學時,我們就已經被制約為用數字來代表一個人的學習成績跟操行表現,升學考試的分數決定我們未來會念哪間大學,而社會上更是充滿許許多多的數字用來評估一個人的工作表現和經濟能力。一到選舉,各種各樣的民調數字充斥媒體版面,候選人也嘗試將政績化為數字,說服選民投下神聖的一票。該如何評估新冠疫情的嚴重度?經濟成長跟防疫哪個比較重要?哪個廠牌的疫苗保護力最好?似乎只要拿出數字,我們就可以得到最終解答。

數字,難道不是客觀反映了現實?我們都有著各自的主觀意見,如果要消弭爭議、得到真相,我們應該尋求的答案就是數字。數字大神無所不能,一個人的智力、幸福感、未來是否容易犯罪,一個國家的經濟成長、自由程度等等,凡是你能想到的概念,全都可以用數字來呈現。

《數字偏見:不再被操弄與誤導,洞悉偽科學的防彈思考》要挑戰的就是上述種種關於數字的期待和崇拜:數字並非純然客觀,許多數字背後都反映了人的主觀偏好和價值選擇;人的思維偏誤會對數據做出錯誤詮釋,而利益團體和政治人物可以透過操弄數字來扭曲真相。本書作者桑妮.布勞是一位經濟學家兼記者,也曾經是數字的狂熱信徒,但研究和新聞工作的經驗讓她發現數字背後蘊藏的迷思、誤用和各種令人意外的故事。數字,依然脫離不了哈拉瑞所說的「想像建構的秩序」,我們該如何成為一個更聰明的數字使用者,而不被數字欺騙和綁架?

從概略介紹數據的歷史談起,布勞從數字標準化、蒐集和分析的觀點,探討了人們面對數字時常有的偏見。有些層面極為有趣且重要,包括相關性不等於因果關係、該如何詮釋黑人智力測驗分數低於白人,乃至於大數據在倫理上的爭議,而有些數字背後的內幕故事更是讓人出乎意料。這一次,我們暫時跳脫數字,用冷靜、批判的角度,思考數字和你我真實生活的關係。

一.當有人宣稱自己的智商157
多數人都有接受過智力測驗的經驗(我指的當然不是網路上的趣味心理測驗),不管是在求學或求職階段,智力測驗的結果通常會是影響你能夠獲得哪些資源的其中一個依據。表面上看,智力測驗測量的是智力,因此你在測驗上所得到的智力商數就代表了你的聰明才智,這應該是很合邏輯的想法。有人喜歡宣稱自己的智商157,這就是來自智力測驗的結果,好像157這個數字代表了一個人在各個層面都非常優秀,他的想法、人格、處理國家大事的能力是一等一的,他人望塵莫及。

但「智力」究竟是什麼?智力測驗真的反映你聰不聰明嗎?非裔美國人在智力測驗上的平均分數低於白人,這是否代表黑皮膚的人先天就比較笨,白皮膚的人就是比較優秀?曾經有科學家就是這麼主張的,他們認為不同族裔在智力測驗上的表現差異純粹是先天因素造成,而且可以作為差別對待的依據。「不信你可以看看數字」,他們和宣稱自己智商157的人一樣,都很相信數字就代表真實。

但智力,以及許多抽象的概念(像GDP和幸福指數),其實在本質上都是人為的建構,是人們為了特定的目標所構思出的理論,以此解釋和預測人類行為或經濟發展。不同的科學家會對智力有不同的定義,這取決於科學家的價值判斷和個人信念,而不同的智力定義下所發展的智力測驗並不會相同。智力測驗只是對智力這個「建構的概念」做有限的觀察,在理想情形下,它的結果可以作為智力的良好估計——但也只是估計而已,要了解一個人的智力,首先要承認智力會隨著定義不同而展現出不同面向,而我們不可能只從單一管道就了解智力,而是需要多重來源的資料。

更進一步的,如同許多心理特質,智力是先天基因和後天環境交互作用下的產物,智力測驗分數高,部分反映了一個人所得到的教育資源相當充足,而某個族群智力測驗的平均數較低,反映的很可能不是種族先天上的差異,而是後天環境裡所遭受的差別對待。

「國內生產毛額只是測量生產的數字,智商也只不過是測驗分數」,是的,有很多東西數字並沒有說明,我們在透過數字進行推論時,必須注意到它並不打算多說東西。

二.抽菸致癌,如何確定?
如果你曾經修過初等統計學,必定會聽過「相關性不等於因果關係」這句箴言,它被印在教科書裡,被教授當作重點中的重點,真理中的真理。即便如此,我們日常生活中還是要面對許多相關性資料,人在面對這些資料時會很直覺地形成因果假設,畢竟當一件事情發生(例如癌症),我們會希望知道原因究竟是什麼,藉此控制結果。而很多時候,我們會選擇對自己而言最明顯的那個,或對自己最有利的那個。

相關性為何不代表因果關係?作者提出了幾個理由:巧合、消失的因素(也就是統計學所稱的第三變項問題)以及相反因果關係。當我們手邊只有相關性資料,這些理由確實會讓我們無法合理推斷因果關係的存在,畢竟,在一般情況裡,因果關係的存在要滿足下列準則:時間順序(因在果前)、因果之間有相關、因果之間的相關不存在替代性解釋。

一個人可以運用「相關不等於因果」來批判性地思考數據當然很好,麻煩的問題是,當我們發現吸菸和肺癌之間存在關聯,動物實驗顯示菸焦油會致癌,接受菸草商委託的科學家出來說話了:這只是相關,不代表吸菸和肺癌有因果關係!這是在老鼠身上發現的,不是人!

很遺憾的,很多時候出於倫理或實務考量,我們就是沒辦法進行隨機性實驗——隨機分派受試者,操弄假設的因,看會出現什麼結果;我們手邊有的可能只有大量的相關性數據。挑戰在於我們必須做出行動,是要放任菸商不管,還是做出干預和限制?

本書作者提供的方法是廣泛回顧該領域的研究資料,如果大量的研究結果皆顯示香菸有害,那我們就得採取行動。這是回歸「證據聚集原則」的做法,也就是如果不同的研究者、不同的研究方法、不同的研究樣本都顯示出共同的結論,那它就可以當作是科學共識來接受。這裡我可以稍微作一點小小補充:其實相關性還是可以協助研究者進行一定程度的因果推論,重點在於使用了什麼方法?是不是了解方法本身的限制?統計控制(statistical control)是其中一個做法,而本書出現過的流行病學家布萊佛德.希爾(Bardford Hill)也曾提過一套被稱之為布萊佛德.希爾準則(Bradford Hill criteria)的原則(註),可以幫助我們在只有相關性資料時,仍可以進行合理的因果推論。

我們無法隨機分派人類受試者去吸菸,再看看他們罹癌了沒,很多高風險性的實驗確實不能用在人類身上。即便如此,關於癌症與致癌物的關係,我們還是有許多可信的資料,而這相當仰賴科學家的假設、推論和信念,很多時候我們也還在尋找答案的道路上。數字反映的不只是人們怎麼想,其實還存在著不確定性。

三.大數據無法回答的事
即便你不是需要在意民調數字的政治家,也不是需要透過研究數據來推論的科學家,但今天的我們都活在大數據裡,變成大量資料的一部分。大數據公司宣稱,擁有這些關於個人的大量資料,可以讓我們的生活更好,可以幫助企業或政府做出更適切的決策。能夠大規模蒐集數據,不再需要擔心樣本數的問題,也不用再仔細規劃問卷的內容,透過科技工具所獲取到的每一個生活的小細節都可以透露你是誰,哪些人、哪些商品、哪些議題適合你。我們何需懷疑數據的威力呢?

是的,大數據的未來可能很美好,演算法的能力遠遠超過傳統的統計學,也許很多的數據蒐集和分析的問題都可以藉大數據和演算法消除,但有一個問題還是存在:什麼樣的目標才是我們該追求的?我們應該把科技建立在什麼樣的規範上?

預測執法(predictive policing)可以幫助警方找出可能的犯罪者,防範未然;以大數據為基礎的信用分數可以讓創業者更容易貸款,有助於人的自我實現和社會的經濟成長;從獲利者的角度,一切都那麼美好,但畢竟還是存在著犧牲者。有色人種更容易被逮捕,弱勢者更無法借到錢,長期下來,大數據產生了惡性的自證預言。

我們或許需要更多的數據才能處理大數據的問題,但我們也可以選擇暫時跳脫數字,不要那麼仰賴它。這意味著數字不再是終極解答,它是一個開端,讓我們開始對話,尋求共識,開始觀察那些無法那麼容易被量化的事物,而這或許才是重點。

四.太多數字,太少理解
你能夠想像一個沒有數字的世界嗎?一個人的財產、幸福、健康、智力……都不再對應於數字,生活中的一切數字,從時間、空間、血壓、臉書按讚數、汽車行駛里程數…全部消失不見?很難想像,幾乎無法想像人在那種世界會怎麼生活!我需要知道現在幾點!我需要知道銀行帳戶還剩多少錢!

人類文明演進至今,我們已不得不依靠數字才能生活,數字確實也是相當方便有效的工具,讓我們能看見現實世界的輪廓,協助我們做更好的決策和選擇。但一旦我們忘了數字只是工具,數據只是用來估計現實而不是客觀的反應現實,我們就會迷失在浩瀚的數字裡,讓數字決定我們是誰。

跟作者桑妮.布勞相似,我一直是數據愛好者,也被教育成數字的信仰者,非常相信「統計讓數字說話」,而數字,代表的應該是真相。這本書讓我重新反省自己對於數字的情感,以及數字在我生活中的比重,我也發現應該要修改一下我的信條:統計呈現了數字,但真正為數字說話的,還是人我們必須注意的,是誰在為數據說話,為了什麼目的說話?

數字還是可以相信的工具,只要我們不迷信,永遠保持一顆好奇的心;只要我們願意去了解自己的認知偏誤,願意去覺察自己對數字的感覺,我們可以減少誤用數字。

不要再把數字當作一切問題的解答。我們這個社會提出了那麼多的數字,以數字來回應數字,有時卻陷入更深的泥淖,讓議題失去焦點。我們缺乏的永遠不會是數字,而是相互理解和對話。

🔢🔢🔢

註:
關於布萊佛德.希爾準則(Bradford Hill criteria)的詳細資料,可參考維基百科
為什麼會看到廣告
這是普通讀者的閱讀心得、閱讀隨筆,簡單來講就是閱讀後腦袋產生的那些東西。歡迎您有空來坐坐、來聊聊,讀讀我的心!
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
當你使用數學這種非黑即白的邏輯, 搭配反證法, 你總是可以「快速」得到結論。 但這種用非黑即白邏輯做出來的快速結論, 對自然對社會對人的「意義」都相當有限。 他或許對你個人很有意義, 因為世界太複雜, 非黑即白可以避免討論灰色地帶, 你還可以形成自洽的對世界的理解。
我們生活的世界離不開數字。有的時候是非常精準的科學,也有的時候是表達我們的觀點。這些數字對我們的影響力很大,看看我們可以說出來的話有哪些吧
Thumbnail
我們活在一個「數據為王」的時代,無形的壓力讓我們陷入一種「我是不是錯過了什麼?」的焦慮漩渦。文章提到當我們過度追求這些數字時,可能會迷失自己。愛因斯坦的名言提醒我們:「並不是所有重要的東西都能被計算,也不是所有能被計算的東西都重要。」
Thumbnail
今天我們要來談談,讀書到底有啥屁用 Hello guys ,我是NeKo嗚喵,歡迎回來我的說書時間,嗚喵! 社會上有一條叫做食物鏈的東西,決定了我們存活的能力和生存條件,而站在食物鏈上的哪一邊又取決於掌握了多少資源而定。不一定是錢,有時候是權力、技術、美貌、名聲,甚至是強大的社會關係。像是伊莉莎白
Thumbnail
選舉民調是預測選舉結果的重要工具。然而,如果我們不了解樣本和母體的概念,就很容易被民調結果誤導。 在本文中,我們將介紹樣本和母體的概念,以及它們對民調結果的影響。我們還將提供一些在閱讀民調報告時的注意事項。
Thumbnail
數感是一個非常籠統的詞語,我個人的解讀是對數字的敏感度。計算能力對於數學上得高分是最重要且容易被忽視的;珠心算對於算好數學有幫助,練習計算能力不難,從基本的四則運算開始,慢慢進階到分數、括號或較複雜的題型。記憶力和判斷力在數學學習中也扮演重要的角色。
Thumbnail
這本書的起源來自於疫情期間,作者以數學家的角度,在網路上發表文章,幫大眾解讀疫情的統計數字是什麼意思,我看完這本書以後不禁感嘆,如果我更早理解這些概念就好了。
Thumbnail
什麼是元智慧? 許多人都理解,知識是什麼,它可以是IQ測出來的智商分數,可以是數學能力很強,也可能是反應很快,能夠舉一反三,又或者是一目十行,過目不忘,最後還有可能是邏輯能力非常好的人,但這些都僅僅局限於知識,而通常我們說的一個人有智慧,最常用的可能是長者,說他們有生活的智慧,但是我現在覺得這有些
前天看了《數值化之鬼》這本書,這本書由識學創辦人安藤廣大撰寫,深入的探討數值化的議題。 在生活與職場上,我們很常很聽到身旁人講數值化思維的重要性,但只有少數人真正理解數值化的真正含義,其中更只有微小的比例能夠真正實踐。 實際上,培養數值化思維並不需要深厚的統計基礎,數值化強調的是「用數字來思考」
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
當你使用數學這種非黑即白的邏輯, 搭配反證法, 你總是可以「快速」得到結論。 但這種用非黑即白邏輯做出來的快速結論, 對自然對社會對人的「意義」都相當有限。 他或許對你個人很有意義, 因為世界太複雜, 非黑即白可以避免討論灰色地帶, 你還可以形成自洽的對世界的理解。
我們生活的世界離不開數字。有的時候是非常精準的科學,也有的時候是表達我們的觀點。這些數字對我們的影響力很大,看看我們可以說出來的話有哪些吧
Thumbnail
我們活在一個「數據為王」的時代,無形的壓力讓我們陷入一種「我是不是錯過了什麼?」的焦慮漩渦。文章提到當我們過度追求這些數字時,可能會迷失自己。愛因斯坦的名言提醒我們:「並不是所有重要的東西都能被計算,也不是所有能被計算的東西都重要。」
Thumbnail
今天我們要來談談,讀書到底有啥屁用 Hello guys ,我是NeKo嗚喵,歡迎回來我的說書時間,嗚喵! 社會上有一條叫做食物鏈的東西,決定了我們存活的能力和生存條件,而站在食物鏈上的哪一邊又取決於掌握了多少資源而定。不一定是錢,有時候是權力、技術、美貌、名聲,甚至是強大的社會關係。像是伊莉莎白
Thumbnail
選舉民調是預測選舉結果的重要工具。然而,如果我們不了解樣本和母體的概念,就很容易被民調結果誤導。 在本文中,我們將介紹樣本和母體的概念,以及它們對民調結果的影響。我們還將提供一些在閱讀民調報告時的注意事項。
Thumbnail
數感是一個非常籠統的詞語,我個人的解讀是對數字的敏感度。計算能力對於數學上得高分是最重要且容易被忽視的;珠心算對於算好數學有幫助,練習計算能力不難,從基本的四則運算開始,慢慢進階到分數、括號或較複雜的題型。記憶力和判斷力在數學學習中也扮演重要的角色。
Thumbnail
這本書的起源來自於疫情期間,作者以數學家的角度,在網路上發表文章,幫大眾解讀疫情的統計數字是什麼意思,我看完這本書以後不禁感嘆,如果我更早理解這些概念就好了。
Thumbnail
什麼是元智慧? 許多人都理解,知識是什麼,它可以是IQ測出來的智商分數,可以是數學能力很強,也可能是反應很快,能夠舉一反三,又或者是一目十行,過目不忘,最後還有可能是邏輯能力非常好的人,但這些都僅僅局限於知識,而通常我們說的一個人有智慧,最常用的可能是長者,說他們有生活的智慧,但是我現在覺得這有些
前天看了《數值化之鬼》這本書,這本書由識學創辦人安藤廣大撰寫,深入的探討數值化的議題。 在生活與職場上,我們很常很聽到身旁人講數值化思維的重要性,但只有少數人真正理解數值化的真正含義,其中更只有微小的比例能夠真正實踐。 實際上,培養數值化思維並不需要深厚的統計基礎,數值化強調的是「用數字來思考」