付費限定

14. 使用链式调用简化多步提示语

閱讀時間約 48 分鐘

Hi, 大家好,我是茶桁。

OpenAI 的大语言模型提供了 Completion 和 Embedding 两个核心接口。

我们可以通过增加提示语(Prompt)历史记录来提高模型的回答准确性和自然性。还可以将 Embedding提前索引好存起来,以此做到让AI根据外部知识来回答问题,

在我们多次与AI对话的过程中,讲AI返回的答案放在新的问题里,那么我们就可以让AI帮主我们给自己的代码撰写单元测试了。

以上这些方法是自然语言类应用中常见的模式。为了方便应用开发者使用这些模式,开源社区开发了名为 Langchain 的开源库,使用 Langchain,我们可以更加快速地实现之前利用大语言模型实现过的功能,并且可以更好地将模型集成到我们的业务系统中,实现更加复杂、有价值的功能。

以行動支持創作者!付費即可解鎖
本篇內容共 19259 字、0 則留言,僅發佈於从零开始接触人工智能大模型你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
9會員
62內容數
从基础开始,再到Python,然后是CV、BI、NLP等相关技术。从头到尾详细的教授一边人工智能。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
茶桁的沙龍 的其他內容
Hi,大家好,我是茶桁。 很遗憾在上一讲,也就是第12讲的时候,咱们对于利用AI写一个VBA宏来执行Excel任务的过程并不顺利,仔细想来既然大家都在这里看这个系列文章了,应该也基本都会Python的,所以一个Excel自动化也并无太大影响,毕竟,这种商业软件的集成一定是早晚的事情,咱们也不必在这
开头我就要跟各位先说对不起,本来我是很想为大家把这部分实现并完成的。但是很抱歉,因为我用的Mac,而这部分代码实现起来的时候一直会如下报错: 当然,其实是可以迂回实现的,就是使用Mac本来的AppleScript,不过实现效果并不好,所以想想也就算了。毕竟我考虑,可能看我这些系列文章的人都多多少少
Hi, 大家好,我是茶桁。 直奔主题,我们来谈谈成本这件事。 大家应该都知道,ChatGPT对免费用户是有5美元的API调用额度的,说是这么说,可是那是以前,现在新注册的小伙伴应该都发现自己的API Key根本无法调用API,原因是这个免费额度似乎已经失效了。而我可以直接说,在我从第一节到第10
Hi, 我是茶桁。 看到我这篇文章的读者们不知道有多少人是接触过ChatGPT或者其他人工智能产品的。 市面上目前充斥着大量的人工智能产品,从聊天,文案,脚本,音乐,绘画等方方面面都涵盖了。但是不知道有多少人遇到过以下的场景不知道该如何解决: 我需要针对一篇很长的文章(可以是论文,可以是小说)
Hi,我是茶桁。 过去的8讲,你已熟悉Embedding和Completion接口。Embedding适合用于机器学习中的分类、聚类等传统场景。Completion接口可以用作聊天机器人,也可以用于文案撰写、文本摘要、机器翻译等工作。 然而,很多同学可能认为这与他们的日常工作无关。实际上,我们通
Hi, 我是茶桁。 我们已经介绍了 OpenAI 的主要接口。这是基础知识系列的最后一讲,我们将讨论 OpenAI GPT 系列模型的其他接口。你可能不会经常使用其中一些接口,但了解它们不会有任何坏处,说不定你会在某些需求中用到它们。 在这篇文章中,我们将一起探讨 OpenAI 为文本改写和内容
Hi,大家好,我是茶桁。 很遗憾在上一讲,也就是第12讲的时候,咱们对于利用AI写一个VBA宏来执行Excel任务的过程并不顺利,仔细想来既然大家都在这里看这个系列文章了,应该也基本都会Python的,所以一个Excel自动化也并无太大影响,毕竟,这种商业软件的集成一定是早晚的事情,咱们也不必在这
开头我就要跟各位先说对不起,本来我是很想为大家把这部分实现并完成的。但是很抱歉,因为我用的Mac,而这部分代码实现起来的时候一直会如下报错: 当然,其实是可以迂回实现的,就是使用Mac本来的AppleScript,不过实现效果并不好,所以想想也就算了。毕竟我考虑,可能看我这些系列文章的人都多多少少
Hi, 大家好,我是茶桁。 直奔主题,我们来谈谈成本这件事。 大家应该都知道,ChatGPT对免费用户是有5美元的API调用额度的,说是这么说,可是那是以前,现在新注册的小伙伴应该都发现自己的API Key根本无法调用API,原因是这个免费额度似乎已经失效了。而我可以直接说,在我从第一节到第10
Hi, 我是茶桁。 看到我这篇文章的读者们不知道有多少人是接触过ChatGPT或者其他人工智能产品的。 市面上目前充斥着大量的人工智能产品,从聊天,文案,脚本,音乐,绘画等方方面面都涵盖了。但是不知道有多少人遇到过以下的场景不知道该如何解决: 我需要针对一篇很长的文章(可以是论文,可以是小说)
Hi,我是茶桁。 过去的8讲,你已熟悉Embedding和Completion接口。Embedding适合用于机器学习中的分类、聚类等传统场景。Completion接口可以用作聊天机器人,也可以用于文案撰写、文本摘要、机器翻译等工作。 然而,很多同学可能认为这与他们的日常工作无关。实际上,我们通
Hi, 我是茶桁。 我们已经介绍了 OpenAI 的主要接口。这是基础知识系列的最后一讲,我们将讨论 OpenAI GPT 系列模型的其他接口。你可能不会经常使用其中一些接口,但了解它们不会有任何坏处,说不定你会在某些需求中用到它们。 在这篇文章中,我们将一起探讨 OpenAI 为文本改写和内容
你可能也想看
Google News 追蹤
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 加州理工學院噴射推進實驗室的 David Van Buren 深入研究了大型語言模型 (LLM) 在模擬
Thumbnail
最近在上LLM線上課 來分享我所學到的 LangChain LangChian是把ChatGPT API 轉換為物件導向的形式來使用我所學到 LangChain 的五個方法 : Prompt Template / LLMChain / OutputParser / Agent / Conversat
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 想要操作ChatGPT,我們可以參考OpenAI的範例: https://platform.openai.com/examples/default-sql-trans
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 24示範了ChatGPT程式的能力,現在我們繼續做下去。 Train a decision tree classifier mod
延續使用Meta釋出的模型,實作Chat GPT - Part 4,我們現在遇到一個問題:語言模型回答的資訊不是我想要的。 於是我參照ChatGPT回答不是你要的怎麼辦?,想使用低成本的技術:RAG,來改善這問題。 以下開始實作,首先引入一個重量級工具包,它叫做LangChain,這是做語言模型
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
Thumbnail
在這篇文章中,我們將探討如何利用ChatGPT這個強大的語言模型來學習其他語言,並比較其與Google翻譯的優缺點。無論你是想提升外語能力還是在跨文化交流中更加流暢,ChatGPT都是一個極具價值的工具。
Thumbnail
本文介紹「思維鏈」(Chain of Thought,CoT)的提問技巧,探討其如何影響ChatGPT等生成式AI工具的表現。由於「思維鏈」能使機器人模仿人類推理的過程,因此,建議在使用大型語言模型進行提示工程時加入類似「讓我們循序思考」等提示詞,以提高多步驟問題的解決能力。
Thumbnail
本文章介紹瞭如何使用AutoGPT, 一種可以自主蒐集資料生成訴求,幫你與ChatGPT在互動中提出一連串的問題,來解決你的問題。對於安裝時的常見問題也進行了解答,並提供了使用的步驟以及目前的解決方式。
Thumbnail
大家好,我是萊丘,今天要與大家分享的是 OpenAI最新公布的AI提示詞生成指南。這份指南分成六大要點,幫助我們如何有效地跟ChatGPT互動,就算你不會寫 code 也可以輕鬆掌握。 要點一:指令清晰且具體 大家都知道,ChatGPT 雖然聰明,但它不是讀心術的高手,所以我們需
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 加州理工學院噴射推進實驗室的 David Van Buren 深入研究了大型語言模型 (LLM) 在模擬
Thumbnail
最近在上LLM線上課 來分享我所學到的 LangChain LangChian是把ChatGPT API 轉換為物件導向的形式來使用我所學到 LangChain 的五個方法 : Prompt Template / LLMChain / OutputParser / Agent / Conversat
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 想要操作ChatGPT,我們可以參考OpenAI的範例: https://platform.openai.com/examples/default-sql-trans
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 24示範了ChatGPT程式的能力,現在我們繼續做下去。 Train a decision tree classifier mod
延續使用Meta釋出的模型,實作Chat GPT - Part 4,我們現在遇到一個問題:語言模型回答的資訊不是我想要的。 於是我參照ChatGPT回答不是你要的怎麼辦?,想使用低成本的技術:RAG,來改善這問題。 以下開始實作,首先引入一個重量級工具包,它叫做LangChain,這是做語言模型
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
Thumbnail
在這篇文章中,我們將探討如何利用ChatGPT這個強大的語言模型來學習其他語言,並比較其與Google翻譯的優缺點。無論你是想提升外語能力還是在跨文化交流中更加流暢,ChatGPT都是一個極具價值的工具。
Thumbnail
本文介紹「思維鏈」(Chain of Thought,CoT)的提問技巧,探討其如何影響ChatGPT等生成式AI工具的表現。由於「思維鏈」能使機器人模仿人類推理的過程,因此,建議在使用大型語言模型進行提示工程時加入類似「讓我們循序思考」等提示詞,以提高多步驟問題的解決能力。
Thumbnail
本文章介紹瞭如何使用AutoGPT, 一種可以自主蒐集資料生成訴求,幫你與ChatGPT在互動中提出一連串的問題,來解決你的問題。對於安裝時的常見問題也進行了解答,並提供了使用的步驟以及目前的解決方式。
Thumbnail
大家好,我是萊丘,今天要與大家分享的是 OpenAI最新公布的AI提示詞生成指南。這份指南分成六大要點,幫助我們如何有效地跟ChatGPT互動,就算你不會寫 code 也可以輕鬆掌握。 要點一:指令清晰且具體 大家都知道,ChatGPT 雖然聰明,但它不是讀心術的高手,所以我們需