AI+學術寫作的啟發 - 如何進行提示工程與大型語言模型(LLMs)對話

更新於 2024/02/24閱讀時間約 8 分鐘

一個好的研究背景在學術研究和專業報告中扮演著非常關鍵的角色。在學習研究論文寫作的過程當中,這一直是讓我最困擾的地方。而師長們通常會用「要經常固定性練筆」來鼓勵我。經歷過一些投稿的煎熬過程之後,我自己對於研究背景重要性越來越重視,也會花越來越多時間,去觀察其他的優異學者與同儕如何從社會脈動、時事主題切入,引導出研究目的、研究重要程度與研究缺口,以及透過這個引言增加讀者的閱讀興趣。然而,我得承認,我很多時候是需要協助。


從一篇文章看到AI+學術寫作的啟發

關注生成式AI(如,ChatGPT)一直是我學術研究的核心之一,在閱讀AI醫學研究論文的時候,偶然在「 Annals of Biomedical Engineering」期刊發表的「Prompt Engineering with ChatGPT: A Guide for Academic Writers」這篇文章,讓我十分驚艷,也同時把文章中的Prompt節錄出來,提供給預備進行醫藥生技領域研究的碩博士專家們。

這篇文章的三個結論是

  • Prompt engineering is important for academic writers and researchers.
  • It helps optimize language models and enhance writing process.
  • It allows writers to navigate AI advancements and utilize cutting-edge technologies.


Prompt Engineering

該文作者菲律賓學者 Louie Giray 將Prompt分成五大類,分別是指導類、系统類、問答類、情境類與混合類。

指導類

主要是給予大型語言一個命令,例如:(1)撰寫不同醫學診斷成像方式的優勢和局限性的比較分析,(2)總結組織工程在器官再生方面的最新進展,尤其在生物醫學工程中的潛在應用

系統類

這類的提示詞可以為學術寫作者提供一個起點或背景,以發展他們的內容。例如:“在生物醫學工程領域,納米材料的使用已經引起了革命性的變化...”或者“生物信息學的新興領域極大地促進了...”。然後,讓大型語言模型往下接續發展。

問答類

學術寫作者可以使用問題-答案提示來圍繞特定的研究問題構建他們的寫作。例如(1)在為生物醫學工程中的特定患者開發個性化醫療設備時面臨的關鍵挑戰是什麽?(2)討論生物材料在組織工程中的作用及其對再生醫學潛在影響。

情境類

在提示中提供額外的背景可以幫助學術寫作者專注於他們主題的特定方面。例如(1)考慮到當前在神經假肢方面的進步,分析這些技術的倫理含義和社會影響。(2)鑒於最近對藥物輸送系統的研究,批判性評估針對癌癥治療的靶向藥物輸送方法的有效性和安全性。”

混合類

學術寫作者可以使用混合提示,結合多個元素來指導他們以全面的方式進行寫作。例如:(1)給定以下關於在軟骨再生中應用組織工程的案例研究,討論在實現長期功能結果方面面臨的挑戰,並提出改善臨床轉化的潛在策略。


牛刀小試分享

腦袋中的想法

根據以上學者還有網站上先進的建議,我就直接試試發展我的提示詞。網站上的先進們都建議,要把角色(人設)也寫上去,讓大型語言模型(我以ChatGPT為例)能夠更限縮這個大型語言模型發展範圍。然後,我假設一個情境,就是請大型語言模型撰寫一份智慧醫療研究計畫書的研究背景,裡面要包含(1)領域中已知的知識 (2)主題的知識缺口 (3)演算法的介紹

我腦袋中的構想是「我將進行一項回朔型研究,發展一套由MRNet與ResNet演算法為基礎的醫學影像辨識模型,並透過偵測病患的MRI影像,以辨識在「腕部三角纖維軟骨複合體 (Triangular Fibrocartilage Complex, TFCC)」是否具有損傷。並且比較這兩個演算法的辨識效果(Performance)。」

提示詞

我是一位預備進行AI醫療研究的博士研究生,我預備進行一項回朔型研究,發展一套由MRNet與ResNet演算法為基礎的醫學影像辨識模型,並透過偵測病患的MRI影像,以辨識在「腕部三角纖維軟骨複合體 (triangular fibrocartilage complex, TFCC)」是否具有損傷。同時,這個研究將比較這兩個演算法對於TFCC損傷的辨識效果(Performance)

因此,請為這篇研究撰寫一個研究背景,以科學和醫學語言為基礎。我需要的介紹內容包括:(1)介紹腕部三角纖維軟骨複合體 (triangular fibrocartilage complex, TFCC)」損傷的已知知識 (2)這個領域的知識缺口 (3)MRNet與ResNet演算法的介紹。

研究計畫草稿生成(基於ChatGPT 4.0)

在當前的醫學影像診斷領域,準確地識別和評估腕部三角纖維軟骨複合體(Triangular Fibrocartilage Complex, TFCC)損傷對於制定有效的治療計畫至關重要。TFCC是腕關節中的一個重要結構,它負責提供關節穩定性,分散腕部負荷,並允許手腕進行多方向運動。TFCC損傷常見於運動員和從事重體力勞動的人群中,可能導致疼痛、握力減弱和腕部運動範圍受限,嚴重影響生活質量。

傳統上,TFCC損傷的診斷依賴於臨床檢查和影像學評估,其中磁共振成像(MRI)是識別這一複雜損傷的金標準。然而,即使是高解析度的MRI掃描,其解釋也面臨主觀性,且需要高度專業和經驗豐富的放射科醫師進行評估。這一挑戰凸顯了開發高精度自動化醫學影像分析工具的迫切需求,以提高TFCC損傷診斷的準確性和效率。

目前,深度學習在醫學影像分析領域顯示了極大的潛力,特別是MRNet和ResNet演算法在識別各種疾病和組織損傷方面取得了突破性進展。MRNet是專門設計用於分析MRI掃描的深度學習模型,能夠從複雜的影像數據中識別細微的損傷跡象。ResNet,或稱殘差網絡,則是一種能力強大的深度神經網絡架構,透過引入殘差學習解決了深度模型訓練中的梯度消失問題,提高了模型的學習效率和準確性。

儘管這些演算法在其他醫學領域已經展現了顯著的應用成果,但它們在TFCC損傷識別方面的效能尚未被充分探索。目前,關於利用深度學習技術對TFCC損傷進行自動化和高精度辨識的研究相對有限,這一知識缺口限制了診斷技術的進步和臨床應用的擴展。

因此,本研究旨在開發一套基於MRNet和ResNet演算法的醫學影像辨識模型,通過分析病患的MRI影像自動識別TFCC損傷。透過比較這兩種演算法在TFCC損傷辨識中的表現,本研究不僅期望填補現有的知識缺口,同時也探索深度學習技術在提高腕部疾病診斷準確性和效率方面的潛力。通過這項研究,我們希望為臨床醫生提供更為準確和高效的工具,以改善TFCC損傷的診斷和治療策略,最終提升患者的治療效果和生活質量。


資料來源:ChatGPT

資料來源:ChatGPT

討論

學術界與教育界對於使用大型語言模型產生文章有著不同角度的看法,菲律賓學者 Louie Giray也是還有正面支持與反面疑慮的想法。

在今日這個快速變遷的世界裡頭,人工智慧正逐漸滲透到各個領域,包括學術寫作。學習如何進行提示工程變得愈來愈重要。作為一名學術寫作者,掌握提示工程的技能能夠讓你適應不斷演變的環境,並有效地利用大型語言模型(LLMs)來提升你的寫作過程。通過發展對提示工程的熟練度,你可以更深入地了解LLMs的能力與限制。這讓你能夠利用像ChatGPT這樣的LLMs,促進與這些先進語言模型更有吸引力和影響力的互動。提示工程作為一種與LLMs有效對話的寶貴工具,讓你能夠自定義和塑造生成的輸出,以符合你所期望的品質和數量。提示工程行為就像是一種編程,賦予你提供清晰指示和通過提示自動化過程的能力。這種編程方面增強了你對輸出的控制,確保生成的文本與你的特定需求相符。通過掌握提示工程,你可以優化你的學術寫作,簡化你的研究或寫作過程,並釋放LLMs的全部潛力,提升你工作的質量和效率。

對於一個長期觀察AI新科技在醫藥生技領域發展的博士生,我還是堅持認為學術上論文的發表有一定的倫理必須遵守,並且應該著重研究的原創性與理論突破性,而這兩個核心才是學術論文的發展價值,而且這也是AI學不來的。

資料來源:Prompt Engineering with ChatGPT: A Guide for Academic Writers


歡迎各領域研究者,共同合作研究

https://www.facebook.com/akousist

https://line.me/R/ti/p/@875lzikp

M-Insight : AI科技創新 分享有關人工智慧對於產業與企業的實務應用、研究成果、產業情報等資訊,歡迎人工智慧、醫藥生技、科技管理領域的同好、專家學者、醫師、研究人員與業界朋友一同參與交流。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
本文章介紹了Nature期刊中關於蛋白質序列的深度學習模型以及未來應用的重要性。蛋白質設計的應用從生物醫學到環境科學等各個領域解決問題方面具有巨大潛力。
今天分享長期觀察 AI 議題的 Martin Signoux 對2024年AI技術領域的觀點。他認為「大型語言模型」未來將不具備任何優勢,未來發展是「大型多模態模型」,而且在2024年的議題量將會超越「大型語言模型」,此觀點也受到楊立昆(Yann LeCuu)的認同。
根據美國FDA的數據顯示,2023年的申請量是歷年最大,放射學領域是AI/ML-SaMD的醫材設備申請數持續穩定成長的科別。AI/ML-SaMD的醫材設備通過量預計將成長30%以上。放射科領域佔全部通過量的76%,估計2023年也將保持居冠。
本文章介紹了Nature期刊中關於蛋白質序列的深度學習模型以及未來應用的重要性。蛋白質設計的應用從生物醫學到環境科學等各個領域解決問題方面具有巨大潛力。
今天分享長期觀察 AI 議題的 Martin Signoux 對2024年AI技術領域的觀點。他認為「大型語言模型」未來將不具備任何優勢,未來發展是「大型多模態模型」,而且在2024年的議題量將會超越「大型語言模型」,此觀點也受到楊立昆(Yann LeCuu)的認同。
根據美國FDA的數據顯示,2023年的申請量是歷年最大,放射學領域是AI/ML-SaMD的醫材設備申請數持續穩定成長的科別。AI/ML-SaMD的醫材設備通過量預計將成長30%以上。放射科領域佔全部通過量的76%,估計2023年也將保持居冠。
本篇參與的主題活動
先前麥克買了在預算及性能方面都十分複合需求的NXTPAPER 11平板,但拿到辦公室使用後便發現因為時不時有簡報需求,主機本身不支援有線視訊輸出實在是非常不方便,因又開始尋找新歡。最終麥克選擇了算是還滿熟悉的品牌小米旗下的小米平板6,以下為麥克這一個月下來的使用心得。
從預計的十月底出貨經過重重波折,Pubu自家開發的10寸彩色閱讀器Pubook Pro終於是送到第一批集資者手中了。究竟這台閱讀器有沒有本事撼動目前的電子紙閱讀器市場?有達到集資時承諾的各項功能嗎?且讓身為首批集資者之一的麥克跟大家談談收到主機後使用數天的感想。
Steam Deck 迎來大改版,最重要的更新就是換成 OLED 螢幕。使用 OLED 螢幕帶來更好看的顏色,大小還小幅提升到 7.4 吋。關係續航力的電池也從 40 瓦小時升級到 50 瓦小時, 3A 大作都可以多玩一小時呢!這麼香的更新,怎麼不給他買下去呢 😄
先前麥克買了在預算及性能方面都十分複合需求的NXTPAPER 11平板,但拿到辦公室使用後便發現因為時不時有簡報需求,主機本身不支援有線視訊輸出實在是非常不方便,因又開始尋找新歡。最終麥克選擇了算是還滿熟悉的品牌小米旗下的小米平板6,以下為麥克這一個月下來的使用心得。
從預計的十月底出貨經過重重波折,Pubu自家開發的10寸彩色閱讀器Pubook Pro終於是送到第一批集資者手中了。究竟這台閱讀器有沒有本事撼動目前的電子紙閱讀器市場?有達到集資時承諾的各項功能嗎?且讓身為首批集資者之一的麥克跟大家談談收到主機後使用數天的感想。
Steam Deck 迎來大改版,最重要的更新就是換成 OLED 螢幕。使用 OLED 螢幕帶來更好看的顏色,大小還小幅提升到 7.4 吋。關係續航力的電池也從 40 瓦小時升級到 50 瓦小時, 3A 大作都可以多玩一小時呢!這麼香的更新,怎麼不給他買下去呢 😄
你可能也想看
Google News 追蹤
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
圖 : 中嘉數位獎學金基金成立暨分享會嘉賓,由右至左為流線傳媒社長戴季全、中嘉集團副董事長賴弦五、AIF董事長詹婷怡、哥倫比亞大學工程與應用科學院長張世富、中嘉集團董事長郭冠群。 【李婉如/ 報導】AI時代來臨,全球投入人工智慧的研發與創新已成為主流熱潮,也重新定義產業對於人才的需求。為提升台
Thumbnail
本片原文:不愛讀書也能成為日語高手:一位技術學院生改變人生 https://vocus.cc/article/6547a8dbfd89780001d623ed
Thumbnail
今天在審一篇稿件... 我的專長領域在數位科技,舉凡電腦鑑識、電腦犯罪、數位證據、大數據、人工智慧、自動駕駛...等科技法律的議題,常常收到要審查別人文章的邀約,可能會遇到投稿者引用很多外文文獻,這些外文文獻的引用是否正確,容易耗費審稿者很多的時間。 我們可以使用ChatPDF的平台,將PDF的
Thumbnail
上一篇文章分享了我對兩則有關AI融入教學新聞的反思,這一篇想來聊聊,我理想中在語言教學產業,AI、數位教學和真人教師之間的互動應該是怎樣的呢? 這一篇文章中,我分享了我自己和我身邊人的故事,希望能提供一些數位X真人的教育方式,也說明:數位與AI不是來取代真人教師的!
https://www.podbean.com/site/EpisodeDownload/PB1487939DQZY6 來讀讀NEJM AI Grand Rounds吧! NEJM AI Grand Rounds Technology An Iron Fist in a Velvet Glo
Thumbnail
大家好! 2023年,人工智能已經能做到非常多事情了,最讓人驚艷的,無愧於是繪圖功能了,在Midjourney出世後帶給我們的震撼不亞於ChatGPT 成為藝術家的門口將大大降低,每一個人都能讓人工智能一鍵生成自己想要的圖片,甚至是許多的風格,改寫。
Thumbnail
原本還在為AI應用的系列文去構思大綱與收集資料,但看到韓國科學家做出常溫超導體的新聞後就坐不住了!! 很希望不是一場詐騙,但若能參與在這個AI與材料的奇異點,我也能榮幸的說我們也是最幸運也最焦慮的一代人。收集各方資訊融合出以下筆記供大家參考。
Thumbnail
前言: 近期 Notion 官方提供 Notion AI ASSIST 的 Beta 版本,讓先行登記的使用者可以測試,重點功能是「Help me write」、「Continue writing」、「Brainstorm ideas」、「Summarize」,也就是說 0-1 幫助你完成文章,從
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
圖 : 中嘉數位獎學金基金成立暨分享會嘉賓,由右至左為流線傳媒社長戴季全、中嘉集團副董事長賴弦五、AIF董事長詹婷怡、哥倫比亞大學工程與應用科學院長張世富、中嘉集團董事長郭冠群。 【李婉如/ 報導】AI時代來臨,全球投入人工智慧的研發與創新已成為主流熱潮,也重新定義產業對於人才的需求。為提升台
Thumbnail
本片原文:不愛讀書也能成為日語高手:一位技術學院生改變人生 https://vocus.cc/article/6547a8dbfd89780001d623ed
Thumbnail
今天在審一篇稿件... 我的專長領域在數位科技,舉凡電腦鑑識、電腦犯罪、數位證據、大數據、人工智慧、自動駕駛...等科技法律的議題,常常收到要審查別人文章的邀約,可能會遇到投稿者引用很多外文文獻,這些外文文獻的引用是否正確,容易耗費審稿者很多的時間。 我們可以使用ChatPDF的平台,將PDF的
Thumbnail
上一篇文章分享了我對兩則有關AI融入教學新聞的反思,這一篇想來聊聊,我理想中在語言教學產業,AI、數位教學和真人教師之間的互動應該是怎樣的呢? 這一篇文章中,我分享了我自己和我身邊人的故事,希望能提供一些數位X真人的教育方式,也說明:數位與AI不是來取代真人教師的!
https://www.podbean.com/site/EpisodeDownload/PB1487939DQZY6 來讀讀NEJM AI Grand Rounds吧! NEJM AI Grand Rounds Technology An Iron Fist in a Velvet Glo
Thumbnail
大家好! 2023年,人工智能已經能做到非常多事情了,最讓人驚艷的,無愧於是繪圖功能了,在Midjourney出世後帶給我們的震撼不亞於ChatGPT 成為藝術家的門口將大大降低,每一個人都能讓人工智能一鍵生成自己想要的圖片,甚至是許多的風格,改寫。
Thumbnail
原本還在為AI應用的系列文去構思大綱與收集資料,但看到韓國科學家做出常溫超導體的新聞後就坐不住了!! 很希望不是一場詐騙,但若能參與在這個AI與材料的奇異點,我也能榮幸的說我們也是最幸運也最焦慮的一代人。收集各方資訊融合出以下筆記供大家參考。
Thumbnail
前言: 近期 Notion 官方提供 Notion AI ASSIST 的 Beta 版本,讓先行登記的使用者可以測試,重點功能是「Help me write」、「Continue writing」、「Brainstorm ideas」、「Summarize」,也就是說 0-1 幫助你完成文章,從