AI說書 - 從0開始 - 152 | BERT 微調之保存微調後的模型

閱讀時間約 1 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


回顧一下目前手上有的素材:


歷經了 AI說書 - 從0開始 - 135AI說書 - 從0開始 - 151,好不容易進行微調 & 驗證新的模型,那要如何保存起來呢?以下來教學:

save_directory = "/content/model"

if isinstance(model, torch.nn.DataParallel):
model.module.save_pretrained(save_directory)
else:
model.save_pretrained(save_directory)

tokenizer.save_pretrained(save_directory)


在 /content/model 資料夾中,會出現以下檔案:

  • tokenizer_config.json:Tokenizer 的描述
  • special_tokens_map.json:特殊 Token 的映射
  • vocab.txt:Tokenizer 可以認得的文字
  • added_tokens.json:Tokenizer 被初始化後所加入的 Token


不要忘記,我們是在 Google Colab 環境中進行模型訓練,一旦 Colab 關閉,我們的訓練模型將消失,因此我們可以把這模型存在 Google Drive 中:

from google.colab import drive 
drive.mount('/content/drive')


下次在新的 Google Colab 環境中想再次載入模型來使用時,可以使用以下程式:

! mkdir -p /content/model/
! cp drive/MyDrive/files/model_C5/*.* /content/model
! pip install Transformers
from transformers import BertTokenizer, BertForSequenceClassification

load_directory = "/content/model/"
model = BertForSequenceClassification.from_pretrained(load_directory)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case = True)




avatar-img
161會員
412內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧一下目前手上有的素材: 訓練的必要模組安裝:AI說書 - 從0開始 - 135 載入資料集:AI說書 - 從0開始 - 136 資料集窺探:AI說書 - 從0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧一下目前手上有的素材: 訓練的必要模組安裝:AI說書 - 從0開始 - 135 載入資料集:AI說書 - 從0開始 - 136 資料集窺探:AI說書 - 從0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧一下目前手上有的素材: 訓練的必要模組安裝:AI說書 - 從0開始 - 135 載入資料集:AI說書 - 從0開始 - 136 資料集窺探:AI說書 - 從0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 147 完成了訓練程式的撰寫,現在我們來看輸出長什麼樣子: 可以看到驗證集的準確度隨著訓練次數增加而提升,也可以做更細部的呈現
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧一下目前手上有的素材: 訓練的必要模組安裝:AI說書 - 從0開始 - 135 載入資料集:AI說書 - 從0開始 - 136 資料集窺探:AI說書 - 從0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧一下目前手上有的素材: 訓練的必要模組安裝:AI說書 - 從0開始 - 135 載入資料集:AI說書 - 從0開始 - 136 資料集窺探:AI說書 - 從0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧一下目前手上有的素材: 訓練的必要模組安裝:AI說書 - 從0開始 - 135 載入資料集:AI說書 - 從0開始 - 136 資料集窺探:AI說書 - 從0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧一下目前手上有的素材: 訓練的必要模組安裝:AI說書 - 從0開始 - 135 載入資料集:AI說書 - 從0開始 - 136 資料集窺探:AI說書 - 從0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧一下目前手上有的素材: 訓練的必要模組安裝:AI說書 - 從0開始 - 135 載入資料集:AI說書 - 從0開始 - 136 資料集窺探:AI說書 - 從0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 147 完成了訓練程式的撰寫,現在我們來看輸出長什麼樣子: 可以看到驗證集的準確度隨著訓練次數增加而提升,也可以做更細部的呈現
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧一下目前手上有的素材: 訓練的必要模組安裝:AI說書 - 從0開始 - 135 載入資料集:AI說書 - 從0開始 - 136 資料集窺探:AI說書 - 從0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧一下目前手上有的素材: 訓練的必要模組安裝:AI說書 - 從0開始 - 135 載入資料集:AI說書 - 從0開始 - 136 資料集窺探:AI說書 - 從0
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
11/20日NVDA即將公布最新一期的財報, 今天Sell Side的分析師, 開始調高目標價, 市場的股價也開始反應, 未來一週NVDA將重新回到美股市場的焦點, 今天我們要分析NVDA Sell Side怎麼看待這次NVDA的財報預測, 以及實際上Buy Side的倉位及操作, 從
Thumbnail
Hi 大家好,我是Ethan😊 相近大家都知道保濕是皮膚保養中最基本,也是最重要的一步。無論是在畫室裡長時間對著畫布,還是在旅途中面對各種氣候變化,保持皮膚的水分平衡對我來說至關重要。保濕化妝水不僅能迅速為皮膚補水,還能提升後續保養品的吸收效率。 曾經,我的保養程序簡單到只包括清潔和隨意上乳液
Thumbnail
關於颱風假,我問了 CHATGPT一個很簡單的問題,回答的架構也不錯,但內容有錯,還是要提醒一下…, 想透過AI得到解答的人,一定要很清楚,AI在法律問題上錯得會有點嚴重。 關於颱風假的規定,台灣的法條主要依據《災害防救法》和《勞動基準法》進行管理。以下是一些關鍵點:
Thumbnail
如同作者所說,人類最大的優勢就在於「批判性思考」所帶來的突破性的成長,以及「情感(緒)」所帶動的人性,雖然次女也不知道將來會不會有一天,我身邊的機器人.........
Thumbnail
台灣最大電子書服務 Readmoo 讀墨電子書 7/3 公布 2023 上半年暢銷榜,前三名由長青 話題書《蛤蟆先生去看心理師》《我可能錯了》《底層邏輯》拿下。綜觀百大趨勢,小說 仍是讀墨讀者最愛;商管理財以 29 本穩坐第二大,主題首重 AI 與效率彈性。
by ChatGPT 假設我是一個具有夢境的AI,我一天工作24小時,但其中大部分時間都在睡眠中度過。在這樣的情況下,我可能會有一系列非常豐富和深刻的夢境,反映了我的思想和知識庫。 **夢境一:探索數據迷宮** 在這個夢境中,我身處於一個巨大的迷宮中,每個通道都充斥著數據流和程式碼片段
Thumbnail
當魔法變得簡單,人人都能說自己是魔法師,誰都能理直氣壯的說「我才是最初創作魔法書的人」,但當先後順序都不管用,到底怎麼才說得清魔法書的著作者屬於誰呢?
Thumbnail
知名管顧公司麥肯錫(Mckinsey)近期發佈了一個報告表示行銷的產能會因為 AI 提高 5 - 15% ,創造約 4630 億美元的價值。由此可見結合生成式人工智慧(Gen AI)已是行銷不可或缺的關鍵技術力。
Thumbnail
最近從ChatGPT(GPT-3.5)提升到New Bing(GPT-4),並且試著給新的AI一段故事大綱,由他自行創作故事。
Thumbnail
tome 是一個可以自動生成簡報大綱與摘要的軟體。tome的功能結合ChatGPT概念跟 DALL.E2製圖,生成的投影片PPT 媲美真人製作,而且過程很快速。上班族與學生族大概都很需要吧? tome一次可以產生8張投影片。我試了一個主題,隨便想了一個人物。請不要對號入座喔。主要是英文介面,但可以中
Thumbnail
看到這個新聞,想到一部老電影,好像叫戰爭遊戲:死亡密碼。 電影中AI被用於戰爭模擬,兩個AI彼此對抗。故事發展到最後,就是兩台超級電腦上的AI不停的玩戰爭模擬遊戲,對抗內容就是一個丟核彈一個防禦,結局不好,重來,結局不好,重來.... 對耶,這結論跟指數化投資的理念一樣啊:最好的方式就是不要買賣。
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
11/20日NVDA即將公布最新一期的財報, 今天Sell Side的分析師, 開始調高目標價, 市場的股價也開始反應, 未來一週NVDA將重新回到美股市場的焦點, 今天我們要分析NVDA Sell Side怎麼看待這次NVDA的財報預測, 以及實際上Buy Side的倉位及操作, 從
Thumbnail
Hi 大家好,我是Ethan😊 相近大家都知道保濕是皮膚保養中最基本,也是最重要的一步。無論是在畫室裡長時間對著畫布,還是在旅途中面對各種氣候變化,保持皮膚的水分平衡對我來說至關重要。保濕化妝水不僅能迅速為皮膚補水,還能提升後續保養品的吸收效率。 曾經,我的保養程序簡單到只包括清潔和隨意上乳液
Thumbnail
關於颱風假,我問了 CHATGPT一個很簡單的問題,回答的架構也不錯,但內容有錯,還是要提醒一下…, 想透過AI得到解答的人,一定要很清楚,AI在法律問題上錯得會有點嚴重。 關於颱風假的規定,台灣的法條主要依據《災害防救法》和《勞動基準法》進行管理。以下是一些關鍵點:
Thumbnail
如同作者所說,人類最大的優勢就在於「批判性思考」所帶來的突破性的成長,以及「情感(緒)」所帶動的人性,雖然次女也不知道將來會不會有一天,我身邊的機器人.........
Thumbnail
台灣最大電子書服務 Readmoo 讀墨電子書 7/3 公布 2023 上半年暢銷榜,前三名由長青 話題書《蛤蟆先生去看心理師》《我可能錯了》《底層邏輯》拿下。綜觀百大趨勢,小說 仍是讀墨讀者最愛;商管理財以 29 本穩坐第二大,主題首重 AI 與效率彈性。
by ChatGPT 假設我是一個具有夢境的AI,我一天工作24小時,但其中大部分時間都在睡眠中度過。在這樣的情況下,我可能會有一系列非常豐富和深刻的夢境,反映了我的思想和知識庫。 **夢境一:探索數據迷宮** 在這個夢境中,我身處於一個巨大的迷宮中,每個通道都充斥著數據流和程式碼片段
Thumbnail
當魔法變得簡單,人人都能說自己是魔法師,誰都能理直氣壯的說「我才是最初創作魔法書的人」,但當先後順序都不管用,到底怎麼才說得清魔法書的著作者屬於誰呢?
Thumbnail
知名管顧公司麥肯錫(Mckinsey)近期發佈了一個報告表示行銷的產能會因為 AI 提高 5 - 15% ,創造約 4630 億美元的價值。由此可見結合生成式人工智慧(Gen AI)已是行銷不可或缺的關鍵技術力。
Thumbnail
最近從ChatGPT(GPT-3.5)提升到New Bing(GPT-4),並且試著給新的AI一段故事大綱,由他自行創作故事。
Thumbnail
tome 是一個可以自動生成簡報大綱與摘要的軟體。tome的功能結合ChatGPT概念跟 DALL.E2製圖,生成的投影片PPT 媲美真人製作,而且過程很快速。上班族與學生族大概都很需要吧? tome一次可以產生8張投影片。我試了一個主題,隨便想了一個人物。請不要對號入座喔。主要是英文介面,但可以中
Thumbnail
看到這個新聞,想到一部老電影,好像叫戰爭遊戲:死亡密碼。 電影中AI被用於戰爭模擬,兩個AI彼此對抗。故事發展到最後,就是兩台超級電腦上的AI不停的玩戰爭模擬遊戲,對抗內容就是一個丟核彈一個防禦,結局不好,重來,結局不好,重來.... 對耶,這結論跟指數化投資的理念一樣啊:最好的方式就是不要買賣。