尋找「一箭雙雕」的M基因

更新於 發佈於 閱讀時間約 4 分鐘

興起於一萬兩千年前的農業,不僅對人類的生活方式發生了重大的影響,也對地球的環境有了漸進式的改變。人類從無意識地選擇可食可用部分(果實、根莖、葉片)較大較美味的品系時,卻不知道這些新品系的植物,也同時在影響著土壤中的微生物。數百萬、千萬乃至數億年與植物緊密合作的微生物伙伴們,因為植物本身的代謝改變,決定不再跟隨它們的宿主(還記得我們介紹過小麥水稻大麥的研究嗎?)獲取養分的能力降低,使得相同的植物無法一直在同一塊土地上成長茁壯。


早期的人類,注意到了這個現象,於是寫下了如「穀田必須歲易」這類的紀錄。也有些人會讓土地休息(休耕)。後來,人們開始懂得施肥:一開始都是用有機肥,在《氾勝之書》裡面,就提到如何製作有機肥,也提到施肥的時機。


到了二十世紀初,隨著「哈伯法」(Haber-Bosch process)的發明,化學肥料就此誕生;從此人們可以不用再擔心沒有肥料的問題了!而科學的進步,也讓人們開始能合成一些新的化學物質,幫助人類消滅影響作物產量的害蟲與微生物。


欣喜的人類,卻沒想到大量使用化肥與農藥的耕種方式,其實並不永續。隨之而來的土壤鹽化與生態破壞後造成的農作物減產,這些都在提醒我們,我們進入了一個惡性循環。更不用提過度施肥造成的「死亡海域」的問題了。


而藉由植入微生物基因製造出來的基改作物,雖然一時之間似乎可以有效地消滅害蟲,但害蟲也很快地發展出抗性。雖然生物科技公司很快的又找到新的基因、製作新的抗蟲植物,但是...這真的是解決的方法嗎?


隨著微生物體(microbiome)的研究愈來愈深入,科學家們發現,跟動物一樣,植物的全身也蓋滿了微生物,被稱為「植物微生物體」(plant microbiome)。而且,植物微生物體對植物的抗病力與產量、風味等息息相關。有益的微生物體生活在植物表面,幫助植物獲取養分、抵抗病菌(甚至某些動物)的侵略。但是,育種這個行為,卻在不知不覺中讓這些微生物遠離了植物。



如果我們能藉由育種,讓農作物可以召喚回那些對它們有益的微生物,是否就可以降低農藥與化肥的使用呢?


近幾年的研究發現,如對香豆酸(p-coumaric acid)、蠟菊素(scopoletin)等由植物產生的化合物,可以讓植物的微生物體變得更豐富化,提升植物的產量。或許,我們也可以透過育種來調整植物自己合成的產物,讓植物恢復召喚對植物有益的微生物的能力,使植物的抗病性上升、獲取養分的能力提高。


這一類的基因,被科學家命名為「M」基因。「M」是「微生物體」(microbiome)的意思,也就是說,這些基因影響的是植物召喚有益微生物的能力。雖然它們並不會讓植物的可食可用部分變大或抗病能力提高,但是卻可以藉著召喚有益微生物,讓植物不太需要化肥、不太需要農藥,就可以長得好。


要怎樣才能找到這些M基因呢?科學家們建議可以從全基因體關連研究(GWAS)來著手。我個人的想法是,答案一定在野生種作物身上。或許我們可以透過將野生種作物與培育品系的作物雜交後,去找尋可以召喚有益微生物的數量性狀基因座(QTL,quantitative trait loci)的方式,來找出更多的M基因。


另外,也可以透過分析野生種作物與培育品系合成的化學物質圖譜,比較它們的不同之處,找出能影響微生物體組成的關鍵化學物質。一旦關鍵化學物質找到,就可以從植物的代謝途徑去找到合成這些關鍵化學物質的M基因,同時進行育種。


等到我們累積越來越多的M基因,我們便可以使用越來越少的化肥與農藥,我們的農業也會變得更能兼顧永續與產量這兩件事!


參考文獻:


Cernava, T. Coming of age for Microbiome gene breeding in plants. Nat Commun 15, 6623 (2024). https://doi.org/10.1038/s41467-024-50700-7


留言
avatar-img
留言分享你的想法!
❦ 莊小昕-avatar-img
2024/08/06
謝謝老師分享!這樣說來,人類,所有生物,都應該有“M基因”!
avatar-img
老葉報報
213會員
686內容數
主要介紹關於植物的新資訊,但是也會介紹一些其他的。 版主在大學教植物生理學,也教過生物化學。 如有推薦書籍需求,請e-mail:susanyeh816@gmail.com
老葉報報的其他內容
2025/04/29
大麥曾經是人類重要的糧食之一,雖然現在食用的人並不多,但依然是重要的動物飼料原料與釀造作物之一。因此,大麥的產量當然重要。 大麥的產量由它的花序,也就是我們熟悉的麥穗來決定。有趣的是,科學家發現大麥花序的形態,其實是由一套名叫CLAVATA訊息傳遞系統負責的喔!
Thumbnail
2025/04/29
大麥曾經是人類重要的糧食之一,雖然現在食用的人並不多,但依然是重要的動物飼料原料與釀造作物之一。因此,大麥的產量當然重要。 大麥的產量由它的花序,也就是我們熟悉的麥穗來決定。有趣的是,科學家發現大麥花序的形態,其實是由一套名叫CLAVATA訊息傳遞系統負責的喔!
Thumbnail
2025/04/29
提到歷史上的群眾狂熱,大家很難不去想到發生在十七世紀的「鬱金香熱」。當時不知道為何,鬱金香的球莖忽然身價百倍,大家瘋了似地搶購,但是除了少數真正的園藝愛好者之外,絕大部分的民眾都只是把它當作投資。 當時最熱門的,是這種有條紋的鬱金香;後來知道,這種鬱金香是被病毒感染。 但是,為何病毒感染會製造圖案?
Thumbnail
2025/04/29
提到歷史上的群眾狂熱,大家很難不去想到發生在十七世紀的「鬱金香熱」。當時不知道為何,鬱金香的球莖忽然身價百倍,大家瘋了似地搶購,但是除了少數真正的園藝愛好者之外,絕大部分的民眾都只是把它當作投資。 當時最熱門的,是這種有條紋的鬱金香;後來知道,這種鬱金香是被病毒感染。 但是,為何病毒感染會製造圖案?
Thumbnail
2025/04/28
植物進行光合作用時,主要使用可見光。傳統上,科學家認為超過700奈米的長波光(也就是所謂的「紅外光」)能量太低,無法推動植物光合作用中的關鍵氧化還原反應。因此,「700奈米」被視為光合作用的紅色極限(red limit)。 不過,最近科學家們在藍綠菌中找到了突破點!
Thumbnail
2025/04/28
植物進行光合作用時,主要使用可見光。傳統上,科學家認為超過700奈米的長波光(也就是所謂的「紅外光」)能量太低,無法推動植物光合作用中的關鍵氧化還原反應。因此,「700奈米」被視為光合作用的紅色極限(red limit)。 不過,最近科學家們在藍綠菌中找到了突破點!
Thumbnail
看更多
你可能也想看
Thumbnail
沙龍一直是創作與交流的重要空間,這次 vocus 全面改版了沙龍介面,就是為了讓好內容被好好看見! 你可以自由編排你的沙龍首頁版位,新版手機介面也讓每位訪客都能更快找到感興趣的內容、成為你的支持者。 改版完成後可以在社群媒體分享新版面,並標記 @vocus.official⁠ ♥️ ⁠
Thumbnail
沙龍一直是創作與交流的重要空間,這次 vocus 全面改版了沙龍介面,就是為了讓好內容被好好看見! 你可以自由編排你的沙龍首頁版位,新版手機介面也讓每位訪客都能更快找到感興趣的內容、成為你的支持者。 改版完成後可以在社群媒體分享新版面,並標記 @vocus.official⁠ ♥️ ⁠
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
人類對生物資源的不當利用,往往對生物多樣性造成許多影響,那麼我們是否能以繁殖個體填補這些傷害呢?
Thumbnail
人類對生物資源的不當利用,往往對生物多樣性造成許多影響,那麼我們是否能以繁殖個體填補這些傷害呢?
Thumbnail
馴化對作物本身造成的最大的影響,大概就是「馴化症候群」了,可以吃/用的部位變大、從雌雄異株變為雌雄同株、多年生/二年生變成一年生、從異株授粉變為自花授粉、可食部分變得美味... 但是,馴化還會對作物有其他的影響,而且,有些是不可逆的!
Thumbnail
馴化對作物本身造成的最大的影響,大概就是「馴化症候群」了,可以吃/用的部位變大、從雌雄異株變為雌雄同株、多年生/二年生變成一年生、從異株授粉變為自花授粉、可食部分變得美味... 但是,馴化還會對作物有其他的影響,而且,有些是不可逆的!
Thumbnail
隨著農業的開展,隨之而來的馴化與育種,影響了植物與它的好伙伴-微生物體-的互動。這使得植物需要更多肥料、需要更多農藥。 如果可以讓植物能喚回它的好伙伴,或許就不需要那麼多的肥料與農藥了?
Thumbnail
隨著農業的開展,隨之而來的馴化與育種,影響了植物與它的好伙伴-微生物體-的互動。這使得植物需要更多肥料、需要更多農藥。 如果可以讓植物能喚回它的好伙伴,或許就不需要那麼多的肥料與農藥了?
Thumbnail
根據研究,植物大概在4.7億到4.5億年前開始登陸。在漫長而漸進的登陸過程中,植物會面對許多新的挑戰。 新的挑戰需要新的基因,而這些新的基因從何而來呢?
Thumbnail
根據研究,植物大概在4.7億到4.5億年前開始登陸。在漫長而漸進的登陸過程中,植物會面對許多新的挑戰。 新的挑戰需要新的基因,而這些新的基因從何而來呢?
Thumbnail
在我還沒有跨進植物這個領域之前,我對於植物只有很粗淺的了解。當時,我並不知道植物有所謂的多倍體,就更不用提異源多倍體了。 而且,因為從小就知道馬與驢交配後生出來的騾並不具有生殖能力(後來知道有極少數有),所以一直認為生物就是不能異種交配。卻沒想到,植物有很多多倍體!
Thumbnail
在我還沒有跨進植物這個領域之前,我對於植物只有很粗淺的了解。當時,我並不知道植物有所謂的多倍體,就更不用提異源多倍體了。 而且,因為從小就知道馬與驢交配後生出來的騾並不具有生殖能力(後來知道有極少數有),所以一直認為生物就是不能異種交配。卻沒想到,植物有很多多倍體!
Thumbnail
馴化(domestication)這種事,人類在一兩萬年前就在做了;但是馴化對生物與環境的影響,卻是這些年才越來越清楚。之前介紹了馴化對大麥與水稻根部菌群的影響,這一篇要介紹馴化對小麥根部菌群的影響。 先說結論:很大!
Thumbnail
馴化(domestication)這種事,人類在一兩萬年前就在做了;但是馴化對生物與環境的影響,卻是這些年才越來越清楚。之前介紹了馴化對大麥與水稻根部菌群的影響,這一篇要介紹馴化對小麥根部菌群的影響。 先說結論:很大!
Thumbnail
馴化會使作物發生所謂的「馴化症候群」:可食的部分變得更大更美味、更方便採集等等。但是最近的研究也發現,由於育種改變了植物的生理特性,所以也反過來對植物周圍的環境產生了影響。 最近的研究發現,馴化水稻與野生種水稻對共生菌根菌的互動大不相同喔!
Thumbnail
馴化會使作物發生所謂的「馴化症候群」:可食的部分變得更大更美味、更方便採集等等。但是最近的研究也發現,由於育種改變了植物的生理特性,所以也反過來對植物周圍的環境產生了影響。 最近的研究發現,馴化水稻與野生種水稻對共生菌根菌的互動大不相同喔!
Thumbnail
過去能固氮的植物,必須要招募「客卿」(如根瘤菌),但是最近發現有植物體內竟然有固氮的胞器~!  
Thumbnail
過去能固氮的植物,必須要招募「客卿」(如根瘤菌),但是最近發現有植物體內竟然有固氮的胞器~!  
Thumbnail
你曾經是草食動物 一木一草即為你的天地 你曾經是肉食動物 狩獵動物即為你的天性 最終生態系裡 分解者 分食一切 消失殆盡 你曾經回到過去 為了安撫未完成的情緒出口 你曾經想像未來 為了追求未知帶來的冒險精神 現在你停留在此時 只為片刻的快樂 因為最終 你不是你 我不是我
Thumbnail
你曾經是草食動物 一木一草即為你的天地 你曾經是肉食動物 狩獵動物即為你的天性 最終生態系裡 分解者 分食一切 消失殆盡 你曾經回到過去 為了安撫未完成的情緒出口 你曾經想像未來 為了追求未知帶來的冒險精神 現在你停留在此時 只為片刻的快樂 因為最終 你不是你 我不是我
Thumbnail
當農友們/消費者們願意將田裡一部份的空間,讓給「牠們」一同共用餐桌,願意放棄部分的作物收成給田間生物時,猛禽棲架就在這個過程中,從土地上悄悄鑽出一個孔隙,鬆動了原本「最大產量化」的農業中心思想,從中長出了名為「生態農業」的新生活方式......
Thumbnail
當農友們/消費者們願意將田裡一部份的空間,讓給「牠們」一同共用餐桌,願意放棄部分的作物收成給田間生物時,猛禽棲架就在這個過程中,從土地上悄悄鑽出一個孔隙,鬆動了原本「最大產量化」的農業中心思想,從中長出了名為「生態農業」的新生活方式......
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News