用 RAG 技術優化企業知識搜索:4 招提升檢索增強生成模型效果

更新於 發佈於 閱讀時間約 4 分鐘

人工智能時代,企業如何有效利用內部知識庫來增強決策能力?檢索增強生成(RAG)技術為我們提供了一個絕佳的解決方案。本文將深入探討 RAG 的工作原理,並分享 4 個實用策略來優化 RAG 系統,助力企業打造更智能的知識管理體系。


RAG 技術簡介


RAG 技術結合了檢索系統和生成式 AI 模型的優勢。它首先從知識庫中檢索相關資訊,然後將這些資訊作為上下文輸入給語言模型,從而生成更準確、更相關的回答。這種方法既保留了傳統檢索系統的精確性,又充分利用了大型語言模型的生成能力。


以一家虛構的冷凍食品公司 ColdF 為例。該公司希望建立一個智能助手,幫助員工快速查詢產品信息、生產流程等內部知識。通過 RAG 技術,我們可以將公司的文檔、報告等資料整合到知識庫中,讓 AI 助手能夠根據具體問題檢索相關信息並生成專業回答。


RAG 系統的關鍵組成部分包括:文本分割、嵌入模型、向量搜索以及最終提示詞設計。下面我們就來看看如何優化這些環節,提升 RAG 的整體效果。


策略一:優化文本分割


文本分割是 RAG 系統的第一步,直接影響後續檢索的精確度。我們可以嘗試以下方法:


1. 根據文檔結構分割:如對於 ColdF 的產品手冊,可按章節或產品類別進行分割。


2. 使用語義分割:利用 NLP 技術,根據段落的語義相關性進行智能分割。


3. 調整分割粒度:實驗不同的分割長度,找到最佳平衡點。過長可能導致檢索不精確,過短則可能丟失上下文。


4. 保留元數據:在分割時保留文檔標題、章節等信息,有助於後續檢索時提供更多上下文。


策略二:選擇合適的嵌入模型


嵌入模型決定了文本如何被轉化為向量,直接影響檢索的質量。可以考慮:


1. 領域特定模型:如果 ColdF 主要處理食品相關文本,可以選擇或微調針對食品行業的嵌入模型。


2. 多語言模型:如果公司文檔涉及多種語言,選擇支持多語言的嵌入模型很重要。


3. 性能與效果權衡:在企業環境中,需要平衡模型的效果和運算效率。


4. 持續更新:隨著新的嵌入模型不斷發布,定期評估和更新所使用的模型很重要。


策略三:優化向量搜索


高效的向量搜索是 RAG 系統的核心。可以採取以下措施:


1. 選擇合適的相似度度量:根據具體應用場景,選擇餘弦相似度、歐氏距離等不同的度量方法。


2. 引入語義過濾:在向量搜索的基礎上,增加關鍵詞匹配等語義過濾步驟,提高檢索精度。


3. 使用高級索引技術:如 HNSW(Hierarchical Navigable Small World)等算法可以大幅提升搜索效率。


4. 動態調整 top-k:根據查詢的具體情況,動態調整返回的相關文檔數量。


策略四:優化最終提示詞


提示詞設計直接影響生成模型的輸出質量。以下是一些建議:


1. 結構化提示:clearly定義上下文、問題和期望的輸出格式。


2. 角色設定:讓模型扮演特定角色,如「ColdF 的產品專家」,有助於生成更專業的回答。


3. 示例引導:在提示詞中加入優秀回答的示例,引導模型生成類似的高質量回答。


4. 動態提示:根據用戶的具體問題和檢索到的文檔內容,動態調整提示詞。


實踐案例


在 ColdF 的案例中,我們可以看到這些策略的具體應用。例如,我們將產品手冊按章節分割,並保留產品類別信息。使用了針對食品行業微調的 BERT 模型作為嵌入模型。在向量搜索時,我們結合了 HNSW 算法和關鍵詞過濾。最後,我們設計了一個動態提示詞模板,根據用戶的問題類型(如產品信息、生產流程等)自動調整提示內容。


這些優化措施顯著提升了 ColdF 智能助手的表現。員工反饋系統能夠更準確地回答專業問題,大大提高了工作效率。


總結


RAG 技術為企業知識管理帶來了革命性的變化。通過持續優化文本分割、嵌入模型、向量搜索和提示詞設計,我們可以構建出更加智能、高效的知識檢索系統。這不僅能提升員工的工作效率,還能為企業決策提供強有力的支持。


在實際應用中,建議企業根據自身的具體需求和數據特點,不斷測試和調整這些策略。同時,隨著 AI 技術的快速發展,也要保持對新技術、新模型的關注,及時將最新的進展應用到 RAG 系統中。


相信通過不斷的優化和創新,RAG 技術將為更多企業帶來智能化轉型的機遇,助力企業在信息時代保持競爭優勢。

留言
avatar-img
留言分享你的想法!
avatar-img
小罗LA的沙龍
0會員
18內容數
小罗LA的沙龍的其他內容
2024/09/19
身為程式設計師,我們總是希望能打造一個舒適高效的工作環境。但市面上那些動輒上千元的「必備神器」真的有必要嗎?其實只要幾百塊,就能大幅提升你的工作效率和舒適度。今天就來分享10個平價又實用的工作臺升級小物,讓你的程式碼質量蹭蹭往上長! 1. 120W USB-C 傳輸線:告別充電煩惱 隨著
2024/09/19
身為程式設計師,我們總是希望能打造一個舒適高效的工作環境。但市面上那些動輒上千元的「必備神器」真的有必要嗎?其實只要幾百塊,就能大幅提升你的工作效率和舒適度。今天就來分享10個平價又實用的工作臺升級小物,讓你的程式碼質量蹭蹭往上長! 1. 120W USB-C 傳輸線:告別充電煩惱 隨著
2024/09/17
在嵌入式設備中,電池狀態的估算一直是個棘手的問題。不同於傳統的固定模型,利用機器學習來預測電池剩餘電量(SOC)成為了一個極具潛力的方向。然而,在急於套用模型之前,我們往往忽視了一個關鍵步驟——探索性數據分析(EDA)。 EDA的重要性不言而喻。它不僅幫助我們理解數據的本質,還為後續的模型選擇
2024/09/17
在嵌入式設備中,電池狀態的估算一直是個棘手的問題。不同於傳統的固定模型,利用機器學習來預測電池剩餘電量(SOC)成為了一個極具潛力的方向。然而,在急於套用模型之前,我們往往忽視了一個關鍵步驟——探索性數據分析(EDA)。 EDA的重要性不言而喻。它不僅幫助我們理解數據的本質,還為後續的模型選擇
2024/09/17
人工智能(AI)和機器學習(ML)正在改變我們生活的方方面面,從購物推薦到醫療診斷,再到犯罪預測。我們常常認為這些技術工具是客觀公正的,能夠幫助我們擺脫人類的偏見和主觀判斷。然而,事實並非如此簡單。 讓我們從一個著名的案例說起。2018年,亞馬遜公司被爆出其招聘AI系統存在性別歧視。這個系統被
2024/09/17
人工智能(AI)和機器學習(ML)正在改變我們生活的方方面面,從購物推薦到醫療診斷,再到犯罪預測。我們常常認為這些技術工具是客觀公正的,能夠幫助我們擺脫人類的偏見和主觀判斷。然而,事實並非如此簡單。 讓我們從一個著名的案例說起。2018年,亞馬遜公司被爆出其招聘AI系統存在性別歧視。這個系統被
看更多
你可能也想看
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
SearchGPT 是由 OpenAI 開發的 AI 驅動搜尋引擎,結合了傳統搜尋引擎技術和最新的 AI 技術,能即時從互聯網獲取資訊。它與其他搜尋引擎相比,提供更相關的搜尋結果、更豐富的結果呈現、更快的速度和更好的生態合作基礎建設。
Thumbnail
SearchGPT 是由 OpenAI 開發的 AI 驅動搜尋引擎,結合了傳統搜尋引擎技術和最新的 AI 技術,能即時從互聯網獲取資訊。它與其他搜尋引擎相比,提供更相關的搜尋結果、更豐富的結果呈現、更快的速度和更好的生態合作基礎建設。
Thumbnail
在當今快速變化的數位時代,企業面臨著前所未有的數據處理需求。為了應對這些挑戰,企業紛紛建立自己的大型語言模型(LLM),利用大量數據進行訓練,讓模型能夠理解並生成自然語言,從而實現人機協作,優化業務流程並提升客戶體驗。
Thumbnail
在當今快速變化的數位時代,企業面臨著前所未有的數據處理需求。為了應對這些挑戰,企業紛紛建立自己的大型語言模型(LLM),利用大量數據進行訓練,讓模型能夠理解並生成自然語言,從而實現人機協作,優化業務流程並提升客戶體驗。
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
在當今快速發展的技術時代,人工智能 Artificial Intelligence 和機器學習 Machine Learning 已成為推動業務創新和增長的重要力量。從改善客戶服務到優化運營流程,AI和ML的應用範圍日益廣泛,為企業創造出前所未有的機會。企業又可如何利用AI和ML提升業務呢?
Thumbnail
在當今快速發展的技術時代,人工智能 Artificial Intelligence 和機器學習 Machine Learning 已成為推動業務創新和增長的重要力量。從改善客戶服務到優化運營流程,AI和ML的應用範圍日益廣泛,為企業創造出前所未有的機會。企業又可如何利用AI和ML提升業務呢?
Thumbnail
本文談及資料科學的領域與分工。首先是建造一個AI的研發流程,資料收集到 AI 模型訓練的過程,AI經歷這一切流程被創造出來並產生價值;再來本文也提及在這個領域中的各種腳色、資料工程師、數據庫工程師、資料科學家和資料分析師的各種介紹。並且強調跨領域合作的重要性。
Thumbnail
本文談及資料科學的領域與分工。首先是建造一個AI的研發流程,資料收集到 AI 模型訓練的過程,AI經歷這一切流程被創造出來並產生價值;再來本文也提及在這個領域中的各種腳色、資料工程師、數據庫工程師、資料科學家和資料分析師的各種介紹。並且強調跨領域合作的重要性。
Thumbnail
本文介紹了AI科研文獻管理工具,包括Connected Papers、EasyScholar、Research Rabbit、ReadPaper、立理 LitLit、海鯨AI學術、pdftopdf.ai等。這些工具能幫助科研人員實現高效的文獻管理和利用文獻資源,並提高科研工作的效率和質量。
Thumbnail
本文介紹了AI科研文獻管理工具,包括Connected Papers、EasyScholar、Research Rabbit、ReadPaper、立理 LitLit、海鯨AI學術、pdftopdf.ai等。這些工具能幫助科研人員實現高效的文獻管理和利用文獻資源,並提高科研工作的效率和質量。
Thumbnail
筆記-股癌-24.06.08 *達哥是聯發科生成式AI服務平台,原先看法是用來coding、問問題。 -RIG(加強功能),給更多公司內部資料,減少幻覺問題,讓回答更佳精準。 -RIG就是open book,直接開答案來看。 -Embedded是讓模型重新學習一個新技能。 -RIG與Emb
Thumbnail
筆記-股癌-24.06.08 *達哥是聯發科生成式AI服務平台,原先看法是用來coding、問問題。 -RIG(加強功能),給更多公司內部資料,減少幻覺問題,讓回答更佳精準。 -RIG就是open book,直接開答案來看。 -Embedded是讓模型重新學習一個新技能。 -RIG與Emb
Thumbnail
本篇文章分享了對創意和靈感來源的深入思考,以及如何將其轉化為實際的成果或解決方案的過程。透過學習、資料收集、練習、創新等方法,提出了將創意落實的思路和技巧。同時介紹了AI在外顯知識的自動化應用,以及對其潛在發展方向的討論。最後探討了傳統機器學習技術在模擬中的應用案例和對AI世界的影響。
Thumbnail
本篇文章分享了對創意和靈感來源的深入思考,以及如何將其轉化為實際的成果或解決方案的過程。透過學習、資料收集、練習、創新等方法,提出了將創意落實的思路和技巧。同時介紹了AI在外顯知識的自動化應用,以及對其潛在發展方向的討論。最後探討了傳統機器學習技術在模擬中的應用案例和對AI世界的影響。
Thumbnail
這篇文章介紹瞭如何利用AI論文工具來提高研究生的論文閱讀效率以及寫作效率。透過Connected Papers、Scispace和Immersive Translate等AI工具,可以進行文獻回顧、段落摘要生成、Paraphrasing、APA格式生成以及論文對照翻譯
Thumbnail
這篇文章介紹瞭如何利用AI論文工具來提高研究生的論文閱讀效率以及寫作效率。透過Connected Papers、Scispace和Immersive Translate等AI工具,可以進行文獻回顧、段落摘要生成、Paraphrasing、APA格式生成以及論文對照翻譯
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News