AI說書 - 從0開始 - 333 | Embedding Based Search Embedded 相似度排序

更新於 發佈於 閱讀時間約 1 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


回顧目前有的素材:


為了進行兩個 Embedding 的相似度計算,我們先撰寫一函數來處理此事宜:

def strings_ranked_by_relatedness(query: str,
df: pd.DataFrame,
relatedness_fn = lambda x, y: 1 - spatial.distance.cosine(x, y),
top_n: int = 100) -> tuple[list[str], list[float]]:


接著我們的 Query 也需要匯入相同的 Embedding Model:

client = OpenAI()

query_embedding_response = client.embeddings.create(model = EMBEDDING_MODEL,
input = query)

query_embedding = query_embedding_response.data[0].embedding


同時資料庫中的資料也需要經過 Embedding Model,並逐一計算相似度:

strings_and_relatednesses = [(row["text"], relatedness_fn(query_embedding, row["embedding"])) for i, row in df.iterrows()]


再進行相似度排序,並擷取前 n 筆資料:

strings_and_relatednesses.sort(key = lambda x: x[1], reverse = True)
strings, relatednesses = zip(*strings_and_relatednesses)
return strings[:top_n], relatednesses[:top_n]


整體程式拼湊起來為:

raw-image



avatar-img
192會員
506內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言
avatar-img
留言分享你的想法!

































































Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 接著讀取 API 金鑰: from
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們將使用 Embedding Based Search,一旦了解如何實現 Embedding Based Search,就可以向應用程式添加功能,例如最近的用戶歷史記
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 接著讀取 API 金鑰: from
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們將使用 Embedding Based Search,一旦了解如何實現 Embedding Based Search,就可以向應用程式添加功能,例如最近的用戶歷史記
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 這裡做 Embedding 與 Postional Encoding 的邏輯梳理與結論: Embedding 訓練方式:AI說書 - 從0開始 - 43 Embed
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 44說完 Embedding ,下一步就是闡述 Positional Embedding,其於原始 Transformer 架構中的角色
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 43中,闡述了 Embedding 的訓練方式,現在我們來看是否 Embedding 如我們預期般運作: 假設我的目標句子是
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 這裡做 Embedding 與 Postional Encoding 的邏輯梳理與結論: Embedding 訓練方式:AI說書 - 從0開始 - 43 Embed
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 44說完 Embedding ,下一步就是闡述 Positional Embedding,其於原始 Transformer 架構中的角色
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 43中,闡述了 Embedding 的訓練方式,現在我們來看是否 Embedding 如我們預期般運作: 假設我的目標句子是