AI說書 - 從0開始 - 338 | Embedding Based Search 資料集描述

更新於 發佈於 閱讀時間約 1 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


我們將更進一步,運行 Embedding 函數,使用 K-Means 聚類演算法建立 Embedding 集群,並要求 Davinci 以文字格式的相應評論來描述每個集群的主題。


Amazon Fine Food Reviews 資料集包含截至 2012 年 10 月用戶撰寫的 568454 條食品評論,評論可以分為正面或負面,評論記錄包含產品 ID、使用者 ID、分數、評論標題(摘要) 和評論正文 (文字)。


我們將自 https://www.kaggle.com/datasets/snap/amazon-fine- food-reviews 下載資料:

!kaggle datasets download -d snap/amazon-fine-food-reviews


然後進行處理:

import zipfile

zip_file_path = '/content/amazon-fine-food-reviews.zip'
csv_file_name = 'Reviews.csv'

with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extract(csv_file_name)



avatar-img
195會員
511內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言
avatar-img
留言分享你的想法!

































































Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前有的素材: AI說書 - 從0開始 - 327 | Embedding Based Search 問答系統前置作業 AI說書 - 從0開始 - 328 |
你可能也想看
Google News 追蹤
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 講完 Transformer 之 Encoder 架構中的 Embedding 與 Positional Encoding 部分,現在進入 Multi-Head Att
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 這裡做 Embedding 與 Postional Encoding 的邏輯梳理與結論: Embedding 訓練方式:AI說書 - 從0開始 - 43 Embed
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 再度回到 Transformer 架構中的 Encoder 部分,如下圖所示: 我現在手上有的素材如下: Embedding 訓練方式:AI說書 - 從0開始
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 44說完 Embedding ,下一步就是闡述 Positional Embedding,其於原始 Transformer 架構中的角色
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 43中,闡述了 Embedding 的訓練方式,現在我們來看是否 Embedding 如我們預期般運作: 假設我的目標句子是
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 講完 Transformer 之 Encoder 架構中的 Embedding 與 Positional Encoding 部分,現在進入 Multi-Head Att
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 這裡做 Embedding 與 Postional Encoding 的邏輯梳理與結論: Embedding 訓練方式:AI說書 - 從0開始 - 43 Embed
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 再度回到 Transformer 架構中的 Encoder 部分,如下圖所示: 我現在手上有的素材如下: Embedding 訓練方式:AI說書 - 從0開始
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 44說完 Embedding ,下一步就是闡述 Positional Embedding,其於原始 Transformer 架構中的角色
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 43中,闡述了 Embedding 的訓練方式,現在我們來看是否 Embedding 如我們預期般運作: 假設我的目標句子是