上古漢語的邏輯結構 167

更新於 2024/12/10閱讀時間約 2 分鐘

3.0 歧義的處理 — 函算語法的一個應用

raw-image

《道德經》的首句為「道可道非常道。名可名非常名。無名天地之始;有名萬物之母。故常無欲以觀其妙;常有欲以觀其徼。此兩者同出而異名,同謂之玄。玄之又玄,眾妙之門」﹔箇中的歧義句包括「無名天地之始」﹑「有名萬物之母」﹑「故常無欲以觀其妙」和「常有欲以觀其徼」。

我們先分析較易處理的「道可道非常道」,以作引子﹕

raw-image

一階成份為前項「道可道」和後項「非常道」,其中的一階函子為「非常道」,一階論元為「道可道」,按此我們有﹕

raw-image

如繼續細解,「非」字應視作動詞,其用法類似前章「知」字的用法而無需與其後項互換位置,因而有

raw-image

現在看一下

raw-image

一句。我們假設 3.0_6 是個完整的句子。這句有兩個讀法﹕

raw-image

raw-image

但按照我們對上古漢語語構的理解,「天地之始」和「無名」都屬 ,需要一個屬於  的「也」字來串聯成句。所以 3.0_7.1* 是可疑的。如接受 3.0_7.1* 的語構型指派,再往下解析便有﹕

raw-image

為促使 3.0_7* 的語構結構串聯,即要促使 3.0_7* 成為合式公式,亦即要取得最終導數 s,「之」字被逼要成為一個語構型為 ((s/n)/n)/的動詞。但如果 2.6 節對「之」字的助詞用法的分析份屬正確的話,那麼「之」字的語構型便應該是 (n/n)/n3.0_7.5*的處理卻違反了我們對「之」字的所有分析。但若遵從 2.6 節對「之」字的助詞用法的分析,3.0_7* 則不可能取得最終導數 s

基於前述的兩個質疑,我們認為,在我們的語構系統中,葛玄和所謂「天才型人物」王弼的解讀或詮釋 (3.0_7*) 都是無稽之談。

__________

待續


內容總結
上古漢語
5
/5
avatar-img
6會員
314內容數
我們這裡談兩個東西: 哲學和邏輯,以及與哲學和邏輯相關的東西。 首先開設的房間是《綁架愛麗絲 之 地下邏輯》。 隨後將陸續開設《綁架愛麗絲 之 鏡像語言》和《上古漢語的邏輯結構》。 聯絡作者﹕sen.wong@protonmail.com
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
sen的沙龍 的其他內容
3.0 歧義的處理 — 函算語法的一個應用 一 由於上古漢語極其簡單的結構和使用者態度粗疏以至對標點符號不重視,後人要準確詮釋古籍的內容便成為一大障礙。 但 2.0 章的的眾多例子告訴我們,借用函算語法 (functorial grammar) 的語構型概念,或許有機會解決這個問題。 其實函
5/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 十三 上古漢語中一個字或詞的語構位置決定了該字或詞的語構型。傳統語法中並置的名詞是最佳例證。假設有一合式
5/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 十二 本章的起點是北宋錢塘僧人文瑩所報導或虛構的一段對話﹕趙匡胤對趙普說,「之乎者也,助得甚事?」缺乏語
5/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 十一 如果讀者還記得,Ya17 的解析止於「后稷子孫之後王」,並有如下的語構型指派﹕ 那時我們的分式對
3/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 十 如果硬要把英語句式 (比如 2.6.14 和 2.6.16) 寫作上古漢語的句式,我們有﹕ 這樣的
5/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 九 再看第二個例句。此例的處理與前例的處理基本一致﹕ 「無」﹑「上食」和「下飲」屬及物動詞類,故應賦予
5/5上古漢語
3.0 歧義的處理 — 函算語法的一個應用 一 由於上古漢語極其簡單的結構和使用者態度粗疏以至對標點符號不重視,後人要準確詮釋古籍的內容便成為一大障礙。 但 2.0 章的的眾多例子告訴我們,借用函算語法 (functorial grammar) 的語構型概念,或許有機會解決這個問題。 其實函
5/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 十三 上古漢語中一個字或詞的語構位置決定了該字或詞的語構型。傳統語法中並置的名詞是最佳例證。假設有一合式
5/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 十二 本章的起點是北宋錢塘僧人文瑩所報導或虛構的一段對話﹕趙匡胤對趙普說,「之乎者也,助得甚事?」缺乏語
5/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 十一 如果讀者還記得,Ya17 的解析止於「后稷子孫之後王」,並有如下的語構型指派﹕ 那時我們的分式對
3/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 十 如果硬要把英語句式 (比如 2.6.14 和 2.6.16) 寫作上古漢語的句式,我們有﹕ 這樣的
5/5上古漢語
2.0 上古漢語的特殊結構 2.1 若干問題的澄清 2.2 虛字 2.3 之乎者也 — 也 (矣﹑焉) 2.4 之乎者也 — 者 2.5之乎者也 — 乎 2.6 之乎者也 — 之 九 再看第二個例句。此例的處理與前例的處理基本一致﹕ 「無」﹑「上食」和「下飲」屬及物動詞類,故應賦予
5/5上古漢語
你可能也想看
Google News 追蹤
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
2.0 上古漢語的特殊結構 2.3 之乎者也 —  也 (矣﹑焉) 2.3.1 也 一﹕初探之四 現在讓我們從函數引申出來的函子/論元觀點來解析上述「也」字的用法。用初級計算機科學編程的語言來說,函子就是一個具有函數功能的物件 (object),方便我們使用﹔它的功能就是讓我們可以召喚
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 四 在以語構範疇為單位的語言結構上,同樣可以應用前述的函數概念或規則。其中一個最大的分別是,若以 1.4.2_4 為用作對比的例子,函算語法的論域 (domain of dis
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 七 指派範疇是第一步, 第二步是設定推導規則。 推導規則的作用是對某一給定的表式63 進行判定,看它是否一個貫通的表式(或詞構)。就上述英語例句而言,我們只需一個簡單的單向通則 (general rule)﹕6
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 五 艾杜凱維茨的語構範疇理論有兩個關於形式語言的預設﹕[Ajdukiewicz 1935: 2]57 1.4.1_1 一個詞構 (das Wortgefüge)58 必須是一個連貫的整體才具有意義。 1.
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 三 上文的這個思想的淵源來自古希臘文語法和歐洲中古時期經院派邏輯對範疇詞 (κατηγόρημα;英譯: categorematic terms) 與非範疇詞 (συνκατηγορημα; 英譯: synca
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 十一 弗雷格還提出另一個例子,說明主謂語結構分析不合理。 在應用到非標準主謂句式時,主語和謂語的區分便不再清晰了。 譬如 1.3_22 (氫比二氧化碳比氫輕) 也可以寫作 1.3_25
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 九 亞里士多德的語法觀點有其邏輯上的需要。他的詞項邏輯 (term logic)52 處理的都是屬於後人稱作「直言命題」的句式。 撇開量詞不談,直言命題可以簡化為一個基本句式﹕主語 + 謂語
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 五 弗雷格要我們注意一個現象,假如我們稱「x」為一個「論元」(argument), 1.3_7 2.13+2 ﹑ 1.3_8 2.23+2 ﹑ 1.3_9 2.33
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
2.0 上古漢語的特殊結構 2.3 之乎者也 —  也 (矣﹑焉) 2.3.1 也 一﹕初探之四 現在讓我們從函數引申出來的函子/論元觀點來解析上述「也」字的用法。用初級計算機科學編程的語言來說,函子就是一個具有函數功能的物件 (object),方便我們使用﹔它的功能就是讓我們可以召喚
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 1.4.2 函算語法與函數概念 四 在以語構範疇為單位的語言結構上,同樣可以應用前述的函數概念或規則。其中一個最大的分別是,若以 1.4.2_4 為用作對比的例子,函算語法的論域 (domain of dis
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 七 指派範疇是第一步, 第二步是設定推導規則。 推導規則的作用是對某一給定的表式63 進行判定,看它是否一個貫通的表式(或詞構)。就上述英語例句而言,我們只需一個簡單的單向通則 (general rule)﹕6
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 五 艾杜凱維茨的語構範疇理論有兩個關於形式語言的預設﹕[Ajdukiewicz 1935: 2]57 1.4.1_1 一個詞構 (das Wortgefüge)58 必須是一個連貫的整體才具有意義。 1.
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 三 上文的這個思想的淵源來自古希臘文語法和歐洲中古時期經院派邏輯對範疇詞 (κατηγόρημα;英譯: categorematic terms) 與非範疇詞 (συνκατηγορημα; 英譯: synca
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 十一 弗雷格還提出另一個例子,說明主謂語結構分析不合理。 在應用到非標準主謂句式時,主語和謂語的區分便不再清晰了。 譬如 1.3_22 (氫比二氧化碳比氫輕) 也可以寫作 1.3_25
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 九 亞里士多德的語法觀點有其邏輯上的需要。他的詞項邏輯 (term logic)52 處理的都是屬於後人稱作「直言命題」的句式。 撇開量詞不談,直言命題可以簡化為一個基本句式﹕主語 + 謂語
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 五 弗雷格要我們注意一個現象,假如我們稱「x」為一個「論元」(argument), 1.3_7 2.13+2 ﹑ 1.3_8 2.23+2 ﹑ 1.3_9 2.33
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的