單獨立因子變異數分析簡介和SPSS操作:1

閱讀時間約 4 分鐘

簡介

變異數分析(Analysis of Variance, ANOVA)是一種統計分析方法,用於檢驗自變項之間不同水平(或組別)是否存在依變項上具有顯著差異。自變項(也稱為因子)是影響觀察到依變項變化的可能原因,例如:我們覺得性別會影響到物理成績,那性別就是因子(男生和女生),物理成績就是依變項。
ANOVA 只是個總稱,它其實可以細分成不同的統計方法,包括單因子 ANOVA、雙因子 ANOVA 和混合ANOVA...等等。
本文講解獨立單因子ANOVA,獨立因子代表其之間水平是相互獨立的。也就是說獨立樣本(Independent Sample)。例如:比較青年、中年、老年三個年齡層的族群,一個人只能是其中一個水平,不可能同時是青年、中年、老年。
因此獨立樣本單因子變異數分析適用於檢定多組獨立樣本間是否有平均數差異。例如:分析從男生和女生的物理成績是否有差異,理論上,男生的物理成績不會影響到女生的物理成績。
Image
在進行單因子變異數分析之前,你需要確保滿足幾個前提條件,這些條件稱為 單因子變異數分析假設。
  1. 依變項必須是連續變量,自變項則是類別,並且必須至少有兩個水平。
  2. 依變項的分佈必須符合正態分佈。
  3. 依變項的變異數在各組之間應該是相似的。這一假設稱為變異數(Variance)同質性。這點在實務研究中特別重要。如果您要比較的組的樣本量大致相等,則無需滿足同質性假設

SPSS操作

自變項:性別(男生和女生)
依變項:填答次數
因為只有兩組,就不用做事後檢定
從上圖中敘述統計可以得知,女生(0)有657人,在填答次數的平均數為2.59 ,標準差為.49
Levene's 檢定是一種統計檢定,用於檢驗在不同組之間變異數是否相似。它是在進行變異數分析之前使用的一個常見檢定。如果 Levene's 檢定的 p 值小於 0.05,則證明各組之間的變異數不相似,因此無法使用 ANOVA。
常見的Levene's 檢定有三種版本,一種是基於平均數的版本,另一種是基於中位數的版本,最後是修整平均數。
根據 Brown 和 Forsythe 的說法:
  1. 原本Levene 檢驗使用平均數而不是中位。對於對稱分佈(常態分佈),使用基於平均數的版本
  2. 修整平均數版本最適用於 重尾分佈(Heavy-tailed distribution )
  3. 在基於中位數的 Levene's 檢定中,對於偏態分佈,或者如果您不確定分佈的基本形狀,中位數可能是您的最佳選擇。
Brown, M. B. and Forsythe, Robust Tests for the Equality of Variances. A. B. (1974), Journal of the American Statistical Association, 69, pp. 364-367. Available here.
那我這裡就先考慮基於中位數的 Levene's 檢定中,結果Levene's 檢定的 p =.250,則證明各組之間的變異數相似。
接下來看結果,性別的p =.250,則證明各組之間的填答次數沒有顯著差異。效果值只有.001,顯示非常小。
最後簡單介紹一下Partial Eta Squared。Partial Eta Squared 是一種常用於統計分析中效果值,用於衡量自變量對依變量的貢獻程度。
Partial Eta Squared 的值介於 0 和 1 之間,越接近 1 表示自變量對依變量的貢獻越大,反之則越小。通常,如果 Partial Eta Squared 的值大於 0.01,則可以認為自變量對因變量具有效果的。然而,這個限制可能因研究的具體目的而異。
根據Cohen(1988)定義,Eta Squared標準如下,Partial Eta Squared也大多這樣看待~
  • .01: Small effect size
  • .06: Medium effect size
  • .14 or higher: Large effect size
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587
之後,我們可能會在寫文章關於如何處理ANOVA其他狀況~
您的研究遇到了統計分析的困難嗎?您需要專業的統計諮詢和代跑服務嗎?請點我看提供的服務
avatar-img
221會員
122內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
心理博士的筆記本 的其他內容
找出重複值可以幫助我們瞭解數據集中是否有重複記錄。重複記錄可能是由於數據收集過程中的錯誤或疏忽而造成的。例如,在填寫問卷時,一個人可能會多次填寫相同的資訊,這將導致重複記錄。 重複記錄可能影響分析結果的準確性和可靠性。例如,在統計分析中,重複記錄可能會使平均值、標準差等統計量的計算結果失真。同時,重
科學研究主要檢驗變項之間的因果關係,在確認因果關係時,檢驗中介效應尤為重要,然而,社會科學中常收集的資料是多層次(巢套)資料。若使用傳統的中介分析容易忽略樣本之間的相關性,則會導致結果有偏誤,所以多層次中介分析旨在解決此問題,SPSS可以透過MLmed執行此方法,本文將介紹如何安裝MLmed
PROCESS macro for SPSS 可以用非常簡單方式進中介模式。本文將介紹三種類型的變項,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
我們將介紹各種類型的信度和統計方法,包含Cohen Kappa 係數、組內相關係數、α係數的SPSS教學。信度的可以使用不同的評估方法來評估。信度對於確定評分標準或量表的一致性和穩定度至關重要。
如果依變項並非連續變項時,就可以改用羅吉斯迴歸。接下來本文將介紹勝算、勝算比、計算範例、二元/順序/多項式羅吉斯迴歸分析範例和SPSS操作方法。
通常我們對於類別變項就直接看敘述統計大小,但如果我們想要用檢定確定兩者差距是達到統計顯著,就要用卡方檢定(Chi-square test)是一種統計學方法,獨立性考驗用於檢驗兩個類別變項各組別之間是否有顯著關聯。本文將介紹卡方檢定並介紹上機操作和事後比較方法。
找出重複值可以幫助我們瞭解數據集中是否有重複記錄。重複記錄可能是由於數據收集過程中的錯誤或疏忽而造成的。例如,在填寫問卷時,一個人可能會多次填寫相同的資訊,這將導致重複記錄。 重複記錄可能影響分析結果的準確性和可靠性。例如,在統計分析中,重複記錄可能會使平均值、標準差等統計量的計算結果失真。同時,重
科學研究主要檢驗變項之間的因果關係,在確認因果關係時,檢驗中介效應尤為重要,然而,社會科學中常收集的資料是多層次(巢套)資料。若使用傳統的中介分析容易忽略樣本之間的相關性,則會導致結果有偏誤,所以多層次中介分析旨在解決此問題,SPSS可以透過MLmed執行此方法,本文將介紹如何安裝MLmed
PROCESS macro for SPSS 可以用非常簡單方式進中介模式。本文將介紹三種類型的變項,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
我們將介紹各種類型的信度和統計方法,包含Cohen Kappa 係數、組內相關係數、α係數的SPSS教學。信度的可以使用不同的評估方法來評估。信度對於確定評分標準或量表的一致性和穩定度至關重要。
如果依變項並非連續變項時,就可以改用羅吉斯迴歸。接下來本文將介紹勝算、勝算比、計算範例、二元/順序/多項式羅吉斯迴歸分析範例和SPSS操作方法。
通常我們對於類別變項就直接看敘述統計大小,但如果我們想要用檢定確定兩者差距是達到統計顯著,就要用卡方檢定(Chi-square test)是一種統計學方法,獨立性考驗用於檢驗兩個類別變項各組別之間是否有顯著關聯。本文將介紹卡方檢定並介紹上機操作和事後比較方法。
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
相信大家現在都有在使用網銀的習慣 以前因為打工和工作的關係,我辦過的網銀少說也有5、6間,可以說在使用網銀App方面我可以算是個老手了。 最近受邀參加國泰世華CUBE App的使用測試 嘿嘿~殊不知我本身就有在使用他們的App,所以這次的受測根本可以說是得心應手
我們做實驗的目的, 往往是想要量化「確定的不確定性 Certain Uncertainty」。 什麼是「不確定性 Uncertainty」? 其實就是無法透過控制各種變因來控制下來的現象。 在做實驗的時候, 就算你已經把實驗條件盡量控制一樣了, 其實實驗的結果每次還是會有一些差異。
瞭解如何透過Regression實作Classification,使用one-hot vector表示不同的類別,並透過乘上不同的Weight和加上不同的bias來得到三個數值形成向量。同時通過softmax的方式得到最終的y'值,並探討使用Cross-entropy來計算類別的loss。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
接續上一篇,繼續來講如何從常態分布的機率進行假設檢定,進而推論母體的平均數吧! 這篇會提到否證的邏輯、魔法數字0.5以及統計檢定到底是什麼這三個主題。
Thumbnail
 當開啟試算表(EXCEL等)的累加(SUM)及離散度,標準差(STDEV)的運算功能後,逐一統計的累進報票式選票統計表就可以退休了,而且全國一萬七千多所的數據不待一所所列出,就可以用較小選區(例如嘉義市198所,宜蘭縣431所等)的統計過程證明統計結果都是正確的,尤其是將計算式列出(隱藏前面的
Thumbnail
本課程為臨護所碩開設,學分為2學分。課程內容包括統計學概論、敘述統計學、電腦在統計上之應用、資料準備、統計推論等。學期作業、考試、評量佔30%至40%,生物統計是基本功,大家加油!
社會計量測試最基本的功能在揭示團體成員及帶領者自己的資訊,尤其關注成員間的連結及連結的理由。社會計量測試通常而言,會經歷暖身、行動、分享、分析、未來計畫與處遇等階段
Thumbnail
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。
Thumbnail
我們常把研究分成量化與質性兩種不同的方法(當然不止這兩種方法),其中量化分析主要在討論變數與變數的關係,而質性分析則在變數間在的互動過程與事件。因此通常在進行質性研究時,我們需要收集大量田野調查或訪談資料。做過訪談的人都知道,訪談後需要反覆的聆聽訪談錄音並將其轉化為訪談逐字稿,這是一個大工程,還好現
Thumbnail
第一堂學生創新團隊的點評 我們的統計在社會科學裡面,它到底是怎麼樣產生的,我們今天要算這個統計學,要送統計,他們本身要有Raw data,這樣才有辦法進行運用,如:我們要怎麼算平均身高如下是:   「全部身高」除以「人數」等於 每個人幾公分  所以我們要設計如何用電腦計算 ,要「input」
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
相信大家現在都有在使用網銀的習慣 以前因為打工和工作的關係,我辦過的網銀少說也有5、6間,可以說在使用網銀App方面我可以算是個老手了。 最近受邀參加國泰世華CUBE App的使用測試 嘿嘿~殊不知我本身就有在使用他們的App,所以這次的受測根本可以說是得心應手
我們做實驗的目的, 往往是想要量化「確定的不確定性 Certain Uncertainty」。 什麼是「不確定性 Uncertainty」? 其實就是無法透過控制各種變因來控制下來的現象。 在做實驗的時候, 就算你已經把實驗條件盡量控制一樣了, 其實實驗的結果每次還是會有一些差異。
瞭解如何透過Regression實作Classification,使用one-hot vector表示不同的類別,並透過乘上不同的Weight和加上不同的bias來得到三個數值形成向量。同時通過softmax的方式得到最終的y'值,並探討使用Cross-entropy來計算類別的loss。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
接續上一篇,繼續來講如何從常態分布的機率進行假設檢定,進而推論母體的平均數吧! 這篇會提到否證的邏輯、魔法數字0.5以及統計檢定到底是什麼這三個主題。
Thumbnail
 當開啟試算表(EXCEL等)的累加(SUM)及離散度,標準差(STDEV)的運算功能後,逐一統計的累進報票式選票統計表就可以退休了,而且全國一萬七千多所的數據不待一所所列出,就可以用較小選區(例如嘉義市198所,宜蘭縣431所等)的統計過程證明統計結果都是正確的,尤其是將計算式列出(隱藏前面的
Thumbnail
本課程為臨護所碩開設,學分為2學分。課程內容包括統計學概論、敘述統計學、電腦在統計上之應用、資料準備、統計推論等。學期作業、考試、評量佔30%至40%,生物統計是基本功,大家加油!
社會計量測試最基本的功能在揭示團體成員及帶領者自己的資訊,尤其關注成員間的連結及連結的理由。社會計量測試通常而言,會經歷暖身、行動、分享、分析、未來計畫與處遇等階段
Thumbnail
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。
Thumbnail
我們常把研究分成量化與質性兩種不同的方法(當然不止這兩種方法),其中量化分析主要在討論變數與變數的關係,而質性分析則在變數間在的互動過程與事件。因此通常在進行質性研究時,我們需要收集大量田野調查或訪談資料。做過訪談的人都知道,訪談後需要反覆的聆聽訪談錄音並將其轉化為訪談逐字稿,這是一個大工程,還好現
Thumbnail
第一堂學生創新團隊的點評 我們的統計在社會科學裡面,它到底是怎麼樣產生的,我們今天要算這個統計學,要送統計,他們本身要有Raw data,這樣才有辦法進行運用,如:我們要怎麼算平均身高如下是:   「全部身高」除以「人數」等於 每個人幾公分  所以我們要設計如何用電腦計算 ,要「input」