類神經網路訓練 訓練機器分類與Cross-entropy

更新於 2024/05/01閱讀時間約 1 分鐘

Classification 可以使用Regression來實作嗎?

我們可以透過使用one-hot vector表示不同的類別。假設有三個類別我們需要區分,這時候我們不使用單純的數字1, 2, 3,而是改用向量[1 0 0]T, [0 1 0]T, [0 0 1]T,藉此就能避免掉1與2比較相似,1與3比較不相似的問題。


但要如何從原本輸出一個數值,進化到輸出三個數值形成向量呢?

透過乘上不同的Weight和加上不同的bias就能得到一個數值,那同樣如果要得到三個數值形成向量,就找出三組W與Bias。

但除此之外,我們還會額外通過softmax的方式,得到最終的y'值。目的是為了更方便與類別向量做比較,類別向量只有1跟0的數字,softmax可以做到normalize的過程,最後就會得到0~1的數值。

計算方法: 將y值取exp之後,除以所有exp y值的總和。(像是比較權重?!)

y' = softmax(y) = exp(yi) / exp(y1)+exp(y2)+exp(y3)


Cross-entropy

雖然在計算loss時可以透過MSE,但大多數在分類的資料訓練時都會利用Cross-entropy來計算類別的loss,會更加適合。-> 有時候MSE會training不起來,但Cross entropy的斜率會比較平均。

Cross entropy計算loss的方法:L(y') = -Σŷilnyi'

raw-image


    avatar-img
    1會員
    37內容數
    留言0
    查看全部
    avatar-img
    發表第一個留言支持創作者!
    dab戴伯的沙龍 的其他內容
    瞭解梯度下降算法中的學習速率調整,包括為什麼需要動態的學習速率、Root Mean Square、RMSProp、最常用的optimization策略Adam,以及如何進行Learning rate Scheduling。
    本文將介紹batch的定義與其在機器學習中的作用,以及不同batch size 的影響。同時也會講解Momentum動量在機器學習中的重要性。透過本文,您將清楚地瞭解batch、batch size和Momentum動量的概念以及其對機器學習的影響。
    之前有提到有時我們在微分之後會得到gradient = 0的值,就以為我們已經找到最小值,但其實它只是local minima。 那這一節主要想跟大家分享我們要怎麼區分是不是Local Minima。
    這篇文章介紹瞭如何使用sigmoid函數來解決函數過於簡單導致的模型偏差問題,並透過尋找函數和參數來逼近precise linear curve。另外,也講述瞭如何尋找讓損失函數最小的參數以及使用batch和反覆進行Sigmoid的方法。
    機器學習是什麼? 簡單來說,機器學習就是訓練機器尋找Function的一段過程,而這個Function可以幫助我們解決我們遇到的問題,或是幫助我們
    static 關鍵字主要用於管理記憶體,可用在variables, methods, blocks, nested classed。加上static關鍵字的物件,會在啟動程式當下就會賦予記憶體位置給此物件,後續無論實例化多少次,記憶體的位置都相同。 以class舉例,static class 與
    瞭解梯度下降算法中的學習速率調整,包括為什麼需要動態的學習速率、Root Mean Square、RMSProp、最常用的optimization策略Adam,以及如何進行Learning rate Scheduling。
    本文將介紹batch的定義與其在機器學習中的作用,以及不同batch size 的影響。同時也會講解Momentum動量在機器學習中的重要性。透過本文,您將清楚地瞭解batch、batch size和Momentum動量的概念以及其對機器學習的影響。
    之前有提到有時我們在微分之後會得到gradient = 0的值,就以為我們已經找到最小值,但其實它只是local minima。 那這一節主要想跟大家分享我們要怎麼區分是不是Local Minima。
    這篇文章介紹瞭如何使用sigmoid函數來解決函數過於簡單導致的模型偏差問題,並透過尋找函數和參數來逼近precise linear curve。另外,也講述瞭如何尋找讓損失函數最小的參數以及使用batch和反覆進行Sigmoid的方法。
    機器學習是什麼? 簡單來說,機器學習就是訓練機器尋找Function的一段過程,而這個Function可以幫助我們解決我們遇到的問題,或是幫助我們
    static 關鍵字主要用於管理記憶體,可用在variables, methods, blocks, nested classed。加上static關鍵字的物件,會在啟動程式當下就會賦予記憶體位置給此物件,後續無論實例化多少次,記憶體的位置都相同。 以class舉例,static class 與
    你可能也想看
    Google News 追蹤
    Thumbnail
    徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
    Thumbnail
    隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
    Thumbnail
    在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
    Thumbnail
    本文介紹了在進行資料分析時,將類別欄位轉換為數值欄位的方法,包括Label Encoding、One-Hot Encoding、Binary Encoding、Target Encoding和Frequency Encoding。每種方法的應用範例、優缺點和適用場景都有詳細說明。
    Thumbnail
    前言 讀了許多理論,是時候實際動手做做看了,以下是我的模型訓練初體驗,有點糟就是了XD。 正文 def conv(filters, kernel_size, strides=1): return Conv2D(filters, kernel_size,
    Thumbnail
    本文主要介紹神經網路訓練辨識的過程,利用fashion_mnist及簡單的神經網路來進行分類。 使用只有兩層的神經網路來訓練辨識fashion_mnist資料。
    Thumbnail
      經過三篇的進展,我們目前實作的網路已經能做到同時訓練多種風格,且後續可以直接進行轉換,不用重新訓練,但是這種方法畢竟還是受到了預訓練的風格制約,無法跳脫出來,那麼有什麼辦法能夠讓他對於沒學過的風格也有一定的反應能力呢?
    Thumbnail
    語言模型與文字表示以不同的方式來分析自然語言的詞語分佈及語意關係。本文章簡要介紹了語言模型、Word2vec、FastText、GloVe和Transformer等技術,並提供了實際的應用參考點,幫助讀者深入理解自然語言處理的技術。
    Thumbnail
    這篇文章以簡單易懂的文字和圖片介紹線性混和效應模型,包含其中的元素和意義。除此之外也透過 R 的實作具體呈現操作時的情況。
    Thumbnail
    徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
    Thumbnail
    隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
    Thumbnail
    在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
    Thumbnail
    本文介紹了在進行資料分析時,將類別欄位轉換為數值欄位的方法,包括Label Encoding、One-Hot Encoding、Binary Encoding、Target Encoding和Frequency Encoding。每種方法的應用範例、優缺點和適用場景都有詳細說明。
    Thumbnail
    前言 讀了許多理論,是時候實際動手做做看了,以下是我的模型訓練初體驗,有點糟就是了XD。 正文 def conv(filters, kernel_size, strides=1): return Conv2D(filters, kernel_size,
    Thumbnail
    本文主要介紹神經網路訓練辨識的過程,利用fashion_mnist及簡單的神經網路來進行分類。 使用只有兩層的神經網路來訓練辨識fashion_mnist資料。
    Thumbnail
      經過三篇的進展,我們目前實作的網路已經能做到同時訓練多種風格,且後續可以直接進行轉換,不用重新訓練,但是這種方法畢竟還是受到了預訓練的風格制約,無法跳脫出來,那麼有什麼辦法能夠讓他對於沒學過的風格也有一定的反應能力呢?
    Thumbnail
    語言模型與文字表示以不同的方式來分析自然語言的詞語分佈及語意關係。本文章簡要介紹了語言模型、Word2vec、FastText、GloVe和Transformer等技術,並提供了實際的應用參考點,幫助讀者深入理解自然語言處理的技術。
    Thumbnail
    這篇文章以簡單易懂的文字和圖片介紹線性混和效應模型,包含其中的元素和意義。除此之外也透過 R 的實作具體呈現操作時的情況。