這篇介紹我看過的AI書籍中,覺得很棒的書單,我按照不同的AI作法來分類:
Machine Learning:
- Pattern Recognition and Machine Learning, Christopher M. Bishop, 2011
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, Trevor Hastie , Robert Tibshirani, Jerome Friedman, 2009
- An Introduction to Statistical Learning: with Applications in R, Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, 2021
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Aurélien Géron, 2022
- 統計學習方法, Second Edition, 李航, 2019
- 機器學習, 周志華, 2016
- 機器學習方法, 李航, 2022
Deep Learning:
- Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016
- Deep Learning with Python, Second Edition, Francois Chollet, 2021
Unsupervised Learning:
- Hands-On Unsupervised Learning Using Python, Ankur Patel, 2019
Reinforcement Learning:
- Dynamic Programming and Optimal Control (2 Vol Set), Dimitri P. Bertsekas, 2012
- Reinforcement Learning and Optimal Control, Dimitri P. Bertsekas, 2019
- Rollout, Policy Iteration, and Distributed Reinforcement Learning, Dimitri P. Bertsekas, 2020
- Neuro-Dynamic Programming, Dimitri P. Bertsekas, John N. Tsitsiklis, 1996
- Deep Reinforcement Learning Hands-On - Second Edition, Maxim Lapan, 2020
- Reinforcement Learning, second edition, Richard S. Sutton, Andrew G. Barto, 2018
- Statistical Reinforcement Learning: Modern Machine Learning Approaches, Masashi Sugiyama, 2015
要學會AI,尚需要一些周邊技能,這邊我推薦:
- Elements of Information Theory 2nd Edition, Thomas M. Cover, Joy A. Thomas, 2006
- Nonlinear Programming 3rd Edition, Dimitri P. Bertsekas, 2016
- Numerical Optimization 2nd Edition, Jorge Nocedal, Stephen Wright, 2006
- Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, Steven Kay, 1993
- Adaptive Signal Processing, Bernard Widrow, 1985
這些都是我自己看完 (花了七年),覺得很棒的書單,讓大家少走一些冤枉路。
不同的程度有不同的閱讀順序,若大家有閱讀順序上的疑慮,我可以再進一步補充。