2024-08-20|閱讀時間 ‧ 約 24 分鐘

AI說書 - 從0開始 - 141 | BERT 微調之 BERT 模型窺探

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


既然現在要執行 BERT 模型的微調,理當看看此模型的一些細節,程式為:

from transformers import BertModel, BertConfig 
configuration = BertConfig()
model = BertModel(configuration)

configuration = model.config
print(configuration)


輸出結果為:


一些參數的解釋如下:

  • attention_probs_dropout_prob: 0.1 對注意力機率應用 0.1 的丟失率
  • hidden_act: "gelu" 是編碼器中的非線性激活函數,它是一個 Gaussian Error Linear Unit Activation Function,輸入按其大小進行加權,這使其成為非線性的
  • hidden_dropout_prob: 0.1 是應用於全連接層的丟失機率,全連接層可以在嵌入層、編碼器層和池化層中找到
  • hidden_size: 768 是編碼層和池化層的維度,詳見 AI說書 - 從0開始 - 128
  • initializer_range: 0.02 是初始化權重矩陣時的標準差值
  • intermediate_size: 3072 是編碼器前饋層的維度
  • max_position_embeddings: 512 是模型使用的最大長度
  • model_type: "bert" 是模型的名稱
  • num_attention_heads: 12 是頭的數量,詳見 AI說書 - 從0開始 - 128
  • num_hidden_layers: 12 是層數,詳見 AI說書 - 從0開始 - 128
  • pad_token_id: 0 是填充 Token 的 ID,以避免訓練填充 Token
  • type_vocab_size: 2 是允許最多能輸入的句子数量,默認是 2,詳見 AI說書 - 從0開始 - 131
  • vocab_size: 30522 是模型用來表示 input_ids 的標記數量
分享至
成為作者繼續創作的動力吧!
從 Google News 追蹤更多 vocus 的最新精選內容從 Google News 追蹤更多 vocus 的最新精選內容

作者的相關文章

Learn AI 不 BI 的其他內容

你可能也想看

發表回應

成為會員 後即可發表留言
© 2024 vocus All rights reserved.