LLM上課分享 - 關於近期很紅的LangChain五大模塊

更新於 發佈於 閱讀時間約 3 分鐘
最近在上LLM線上課 來分享我所學到的 LangChain LangChian是把ChatGPT API 轉換為物件導向的形式來使用我所學到 LangChain 的五個方法 : Prompt Template / LLMChain / OutputParser / Agent / ConversationChain
這些知識分享和所學都是來自Tibame緯育大型語言模型LLM企業應用開發實戰班,這是一個直播線上課程,內容會提及Langchian和向量資料庫,推薦給大家! (https://www.tibame.com/program/llm)

1. Prompt Template


介紹:

是 LangChain 中的一個核心概念,用於定義和格式化發送給模型的訊息。它可以幫助開發者建立可重複使用的模板,確保對模型的輸入始終遵循特定的結構。


  • 系統模板 System Template:用於設置對話的背景和規則,通常包含模型在回答問題時應遵循的指示或角色。


  • 人類模板 Human Template:用於定義來自用戶的輸入訊息,這些訊息是模型需要回應的主要內容。它通常包括用戶的問題或需求。


應用:

  • 多輪對話: 在多輪對話中保持一致性,確保模型能夠連貫地理解和回應上下文。
  • 生成提示:根據用戶的行為和輸入生成提示,提供更個性化的體驗。

2. LLMChain


LLMChain 是 LangChain 中的核心組件,將提示模板和語言模型結合在一起。負責處理輸入和輸出,並確保每次調用模型時都遵循定義的提示模板。


應用:

  • 模塊化設計:允許開發者將不同的模型和提示模板組合在一起,實現模組靈活組合。



3. 各種文件格式的 OutputParser 如JsonOutputParser


OutputParser 是用於解析模型輸出的工具,確保輸出數據符合預期格式。

例如,JsonOutputParser 將模型的輸出解析為 JSON 格式,方便後續處理和使用。


應用:

  • 自定義解析器:開發者可以根據需求創建自定義的 OutputParser,以處理特定格式的輸出,例如 XML、CSV 或自定義的數據結構。


詳細網址在範例

  • 數據驗證:OutputParser 可以用來驗證輸出的數據,確保其符合預期格式和數據完整性。
  • 應用場景:適用於API 集成和報告生成等需要標準化數據輸出的應用。



4. Agent


介紹:

  • Agent 是 LangChain 中的一個強大功能,允許模型與外部工具和服務進行互動。Agent 可以加載和使用多種工具,從而增強模型的能力和功能。


延伸:

  • 多工具集成:Agent 可以集成多種工具,如搜索引擎、計算器、數據庫查詢等,實現多功能應用。
  • 智能決策:通過 Agent,可以讓模型根據上下文和需求進行智能決策,選擇合適的工具來回答問題或執行任務。


範例包含Agent本身的計算

也透過Agent配合google-serach來查找最新問題的解答



5. ConversationChain


介紹:

  • 是用於管理和維護對話上下文的工具,允許模型在多輪對話中保持上下文記憶。這對於需要連貫對話和上下文理解的應用非常重要。


延伸:

  • 記憶管理:ConversationChain 可以記住和管理對話中的關鍵訊息,確保模型能夠正確理解和回應用戶的需求。
  • 多輪對話策略:可以設計和實現多輪對話策略,確保對話的自然流暢和邏輯連貫。

應用場景:

適用於聊天機器人、智能客服和教育輔助工具等需要多輪對話和上下文記憶的應用。


如果想看示範, 在我的Threads中會有更詳細的範例和說明~



avatar-img
5會員
9內容數
Dex的塵世哲學 🏃Python作品集引導,引領踏入大數據和AI 💼歷經半導體、資料科學、軟體開發,建立程式職涯交流,提供理工職涯洞見 我是:程式入門者的引路人 ; 轉職者的職涯諮詢師, 精進者的學習進修顧問 。 我能:協助程式入門、轉職探索、作品集規劃;職涯諮詢和履歷健檢 ; 學習資源提供和技術心得見解。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Dex的塵世哲學 的其他內容
Python擁有便攜性和通用性,適用於多種場景,同時具有全球通用性。Python在科技製造業、資料分析、人工智慧等領域有廣泛應用,對於理工科背景者而言有獨特的優勢。透過在線課程、自學書籍、實作專案,以及參與社群和開源專案,理工背景者可以達成從轉職進入Python程式領域的目標。
Python轉職的三大階段包括基礎學習和建立作品集,再到打造出色的面試履歷。從具體目標設定到實際操作和團隊協作,都是成功的關鍵。建立多元且有深度的作品集,展示技術能力和解決問題的實力,能夠大幅提升面試成功率。透過不斷學習並優化自己的思維,可以發現更多職業機會。
Python擁有便攜性和通用性,適用於多種場景,同時具有全球通用性。Python在科技製造業、資料分析、人工智慧等領域有廣泛應用,對於理工科背景者而言有獨特的優勢。透過在線課程、自學書籍、實作專案,以及參與社群和開源專案,理工背景者可以達成從轉職進入Python程式領域的目標。
Python轉職的三大階段包括基礎學習和建立作品集,再到打造出色的面試履歷。從具體目標設定到實際操作和團隊協作,都是成功的關鍵。建立多元且有深度的作品集,展示技術能力和解決問題的實力,能夠大幅提升面試成功率。透過不斷學習並優化自己的思維,可以發現更多職業機會。
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續xxxx,ChatGPT 產生的程式,我們將它匯入 Colab 執行看看 ( Colab 使用教學見 使用Meta釋出的模型,實作Chat GPT - Part 0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 xxx ,ChatGPT 除了產生程式周邊的文字描述,事實上它還會回覆程式語法的指令 : !pip install scikit-learn import nu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 想要操作ChatGPT,我們可以參考OpenAI的範例: https://platform.openai.com/examples/default-sql-trans
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 25示範了ChatGPT程式的能力,同時在AI說書 - 從0開始 - 26靠ChatGPT產生Decision Tree程式,現在我們來
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 25示範了ChatGPT程式的能力,現在我們繼續做下去。 AI說書 - 從0開始 - 25在步驟7:Plot the confusio
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 24示範了ChatGPT程式的能力,現在我們繼續做下去。 Train a decision tree classifier mod
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 23示範了ChatGPT回答的能力,現在我們來看看ChatGPT撰寫程式的能力。 嘗試問以下問題:Write a detailed
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 22解釋Foundation Model與Engines意涵後,我們來試用看看ChatGPT。 嘗試問以下問題:Provide a
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
延續使用Meta釋出的模型,實作Chat GPT - Part 4,我們現在遇到一個問題:語言模型回答的資訊不是我想要的。 於是我參照ChatGPT回答不是你要的怎麼辦?,想使用低成本的技術:RAG,來改善這問題。 以下開始實作,首先引入一個重量級工具包,它叫做LangChain,這是做語言模型
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續xxxx,ChatGPT 產生的程式,我們將它匯入 Colab 執行看看 ( Colab 使用教學見 使用Meta釋出的模型,實作Chat GPT - Part 0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 xxx ,ChatGPT 除了產生程式周邊的文字描述,事實上它還會回覆程式語法的指令 : !pip install scikit-learn import nu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 想要操作ChatGPT,我們可以參考OpenAI的範例: https://platform.openai.com/examples/default-sql-trans
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 25示範了ChatGPT程式的能力,同時在AI說書 - 從0開始 - 26靠ChatGPT產生Decision Tree程式,現在我們來
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 25示範了ChatGPT程式的能力,現在我們繼續做下去。 AI說書 - 從0開始 - 25在步驟7:Plot the confusio
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 24示範了ChatGPT程式的能力,現在我們繼續做下去。 Train a decision tree classifier mod
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 23示範了ChatGPT回答的能力,現在我們來看看ChatGPT撰寫程式的能力。 嘗試問以下問題:Write a detailed
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 22解釋Foundation Model與Engines意涵後,我們來試用看看ChatGPT。 嘗試問以下問題:Provide a
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
延續使用Meta釋出的模型,實作Chat GPT - Part 4,我們現在遇到一個問題:語言模型回答的資訊不是我想要的。 於是我參照ChatGPT回答不是你要的怎麼辦?,想使用低成本的技術:RAG,來改善這問題。 以下開始實作,首先引入一個重量級工具包,它叫做LangChain,這是做語言模型