決定係數(Coefficient of Determination, R平方)

更新 發佈閱讀 1 分鐘

決定係數(Coefficient of Determination),通常以 R^2 表示,是衡量迴歸模型擬合效果的一個統計指標。它代表模型解釋的目標變量變異的比例,用於評估模型對數據的解釋能力。

  • R^2 = 1 表示模型完美擬合數據(預測值完全等於真實值);
  • R^2 表示模型表現等同於只用平均值作預測;
  • R^2 表示模型表現劣於平均值模型。

決定係數在特徵選擇中的角色

  • 用作評估包含某些特徵的迴歸模型是否改進了對目標變量的解釋能力;
  • 在包裝法中特徵選擇可以依據提升的 $$ R^2 $$ 來篩選有用特徵;
  • 適用於線性回歸和類似迴歸模型的特徵評估。

簡言之,決定係數是衡量模型擬合優劣的標準指標,通過比較模型誤差與總變異來判斷特徵選擇是否提升了模型效果,是特徵選擇和模型評價的重要參考指標。

留言
avatar-img
留言分享你的想法!
avatar-img
郝信華 iPAS AI應用規劃師 學習筆記
21會員
495內容數
現職 : 富邦建設資訊副理 證照:經濟部 iPAS AI應用規劃師 AWS Certified AI Practitioner (AIF-C01)
2025/09/10
Target Encoding(目標編碼)是一種用於機器學習中處理類別變數的編碼技術,特別適合高基數(高種數量)類別特徵。它通過將類別值替換成該類別在目標變量上的統計值(通常是目標的均值),使模型能夠有效利用類別與目標之間的關聯信息。 Target Encoding原理 對於分類或回歸問題,計算
2025/09/10
Target Encoding(目標編碼)是一種用於機器學習中處理類別變數的編碼技術,特別適合高基數(高種數量)類別特徵。它通過將類別值替換成該類別在目標變量上的統計值(通常是目標的均值),使模型能夠有效利用類別與目標之間的關聯信息。 Target Encoding原理 對於分類或回歸問題,計算
2025/09/10
Ordinal Encoding(序數編碼)是一種將**有序類別型變數**(ordinal categorical variables)轉換為數值型變數的編碼方法。它依據類別之間的固有順序,將每個類別分配一個整數,以保留類別間的大小或等級關係,常用於機器學習的數據預處理階段。 Ordinal En
2025/09/10
Ordinal Encoding(序數編碼)是一種將**有序類別型變數**(ordinal categorical variables)轉換為數值型變數的編碼方法。它依據類別之間的固有順序,將每個類別分配一個整數,以保留類別間的大小或等級關係,常用於機器學習的數據預處理階段。 Ordinal En
2025/09/10
支持向量機(SVM)的核技巧(Kernel Trick)是一種用來解決非線性分類問題的有效方法。它的核心思想是將原本不可線性分離的數據,透過一個非線性映射函數,投射到高維度的特徵空間中,使數據在高維空間可線性分割,然後再在該空間中運用線性支持向量機進行分類。 核技巧優點 能有效解決高維非線性
2025/09/10
支持向量機(SVM)的核技巧(Kernel Trick)是一種用來解決非線性分類問題的有效方法。它的核心思想是將原本不可線性分離的數據,透過一個非線性映射函數,投射到高維度的特徵空間中,使數據在高維空間可線性分割,然後再在該空間中運用線性支持向量機進行分類。 核技巧優點 能有效解決高維非線性
看更多
你可能也想看
Thumbnail
在小小的租屋房間裡,透過蝦皮購物平臺採購各種黏土、模型、美甲材料等創作素材,打造專屬黏土小宇宙的療癒過程。文中分享多個蝦皮挖寶地圖,並推薦蝦皮分潤計畫。
Thumbnail
在小小的租屋房間裡,透過蝦皮購物平臺採購各種黏土、模型、美甲材料等創作素材,打造專屬黏土小宇宙的療癒過程。文中分享多個蝦皮挖寶地圖,並推薦蝦皮分潤計畫。
Thumbnail
小蝸和小豬因購物習慣不同常起衝突,直到發現蝦皮分潤計畫,讓小豬的購物愛好產生價值,也讓小蝸開始欣賞另一半的興趣。想增加收入或改善伴侶間的購物觀念差異?讓蝦皮分潤計畫成為你們的神隊友吧!
Thumbnail
小蝸和小豬因購物習慣不同常起衝突,直到發現蝦皮分潤計畫,讓小豬的購物愛好產生價值,也讓小蝸開始欣賞另一半的興趣。想增加收入或改善伴侶間的購物觀念差異?讓蝦皮分潤計畫成為你們的神隊友吧!
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
選舉民調是預測選舉結果的重要工具。然而,如果我們不了解樣本和母體的概念,就很容易被民調結果誤導。 在本文中,我們將介紹樣本和母體的概念,以及它們對民調結果的影響。我們還將提供一些在閱讀民調報告時的注意事項。
Thumbnail
選舉民調是預測選舉結果的重要工具。然而,如果我們不了解樣本和母體的概念,就很容易被民調結果誤導。 在本文中,我們將介紹樣本和母體的概念,以及它們對民調結果的影響。我們還將提供一些在閱讀民調報告時的注意事項。
Thumbnail
接續上一篇,繼續來講如何從常態分布的機率進行假設檢定,進而推論母體的平均數吧! 這篇會提到否證的邏輯、魔法數字0.5以及統計檢定到底是什麼這三個主題。
Thumbnail
接續上一篇,繼續來講如何從常態分布的機率進行假設檢定,進而推論母體的平均數吧! 這篇會提到否證的邏輯、魔法數字0.5以及統計檢定到底是什麼這三個主題。
Thumbnail
 當開啟試算表(EXCEL等)的累加(SUM)及離散度,標準差(STDEV)的運算功能後,逐一統計的累進報票式選票統計表就可以退休了,而且全國一萬七千多所的數據不待一所所列出,就可以用較小選區(例如嘉義市198所,宜蘭縣431所等)的統計過程證明統計結果都是正確的,尤其是將計算式列出(隱藏前面的
Thumbnail
 當開啟試算表(EXCEL等)的累加(SUM)及離散度,標準差(STDEV)的運算功能後,逐一統計的累進報票式選票統計表就可以退休了,而且全國一萬七千多所的數據不待一所所列出,就可以用較小選區(例如嘉義市198所,宜蘭縣431所等)的統計過程證明統計結果都是正確的,尤其是將計算式列出(隱藏前面的
Thumbnail
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。
Thumbnail
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。
Thumbnail
依照中央極限定理,我們可以得知(獨立且隨機樣本的)抽樣分布最終會形成常態分佈,那麼這件事情到底為什麼很重要呢? 這篇文章就來介紹一些常態分布的基本特性,以及最重要的──常態分布怎麼幫助我們計算機率。
Thumbnail
依照中央極限定理,我們可以得知(獨立且隨機樣本的)抽樣分布最終會形成常態分佈,那麼這件事情到底為什麼很重要呢? 這篇文章就來介紹一些常態分布的基本特性,以及最重要的──常態分布怎麼幫助我們計算機率。
Thumbnail
用R語言進行HLM分析第一章將介紹ICC係數定義,並實際示範如何使用R語言計算ICC,並解釋其含意。
Thumbnail
用R語言進行HLM分析第一章將介紹ICC係數定義,並實際示範如何使用R語言計算ICC,並解釋其含意。
Thumbnail
皮爾森相關係數 (r) 是衡量線性相關性的最常用方法。它是一個介於 –1 和 1 之間的數值,用於衡量兩個變量之間關係的強度和方向。本文簡介公式解釋和SPSS教學。
Thumbnail
皮爾森相關係數 (r) 是衡量線性相關性的最常用方法。它是一個介於 –1 和 1 之間的數值,用於衡量兩個變量之間關係的強度和方向。本文簡介公式解釋和SPSS教學。
Thumbnail
本文章收集與評論三個體現「精準度-可解釋性權衡 (Accuracy-Interpretability Tradeoff)」的例子。 在詐欺偵測的數據集中,本來預期要觀察到的權衡,似乎並沒有出現。這令人非常好奇這個權衡的故事,源頭是哪邊。 本文章收錄三個,對於此權衡的認知升級。
Thumbnail
本文章收集與評論三個體現「精準度-可解釋性權衡 (Accuracy-Interpretability Tradeoff)」的例子。 在詐欺偵測的數據集中,本來預期要觀察到的權衡,似乎並沒有出現。這令人非常好奇這個權衡的故事,源頭是哪邊。 本文章收錄三個,對於此權衡的認知升級。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News