機器學習模型革新 AI翻譯品質再次向前邁進

更新於 發佈於 閱讀時間約 4 分鐘
Google 一直致力於透過機器學習改善自家翻譯系統的準確度,利用人工智慧的力量提升機器翻譯品質,並於今年八月發表新機器學習模型 Universal Transformer。隨著機器學習模型不斷演進,AI 處理翻譯時的邏輯和策略也與真人譯者越來越相似。
Google 在去年發佈了新型機器學習模型 Transformer,使得翻譯準確度和效率較循環神經網路模型(Recurrent Neural Networks, RNN)提升不少。而今年Google 則是改良了Universal模型,發表了新的 Universal Transformer 模型,讓翻譯事業更上一層樓。要瞭解這之間的運作方式,以及 Google 翻譯系統越來越強大的原因,就請各位讀者跟著小編一起讀下去囉!
首先,過去的機器翻譯系統採用循環神經網路模型處理翻譯訊息,而該模型處理訊息的機制是依照順序處理每個單字,並且將先前單字處理好的結果帶入下一個單字的分析預測中。
舉個例子來說,小明重訓時習慣分成胸 – 三頭、背 – 二頭、腿三組循環,但是重訓的時間極不固定,如果公司上班忙碌,需要加班,可能間隔好幾天才重訓;而比較不忙碌的時候,則會天天跑去重訓。
RNN 透過逐筆運算,分析發現小明的運動規律和前一次訓練的部位有關,如果前一次練背 – 二頭、下一次就會練腿,再下一次就會練胸 – 三頭,進而預測小明每天訓練的部位。如果小明今天沒去重訓呢?循環神經網路會使用小明前一次重訓的紀錄(可能是昨天或好幾天前),帶入明天的預測分析中。
到這裡我們可以發現 RNN 會依序分析資料後,形成一個資料網路,分析每筆資料間的關聯,並作出預測,但這同時也代表在長句處理時 RNN 需要的步驟較為繁複,訓練起來較費時。
相較之下,Transformer 則是利用自我注意機制(self-attention mechanism),判斷句子中的哪些單詞需要較多的運算資源,並進行處理,就像人類譯者並不是拿到文章就一路埋頭苦翻到底,而是邊分析文章中的字句,邊決定接下來如何翻譯。
文章中所舉的例子為:I arrived at the bank after crossing the river.
傳統的RNN運算模型需要逐字分析完「bank」、「river」等字後才能理出其中的關連,判斷bank指的是河堤,而非銀行。若句子拉長,兩個彼此有關聯的單詞距離較遠時,這樣的運算方式就會較耗時。
Transformer模型則是透過經驗,建立句子中所有單詞之間的關聯(與單詞相對距離無關),並判斷哪些單詞需要較多的關注,以同句子為例,Transformer模型能判斷「I」、「bank」、「river」中,「bank」有多種解釋可能,「I」和「river」則相對較無歧異。接著,為了處理歧異性較高的「bank」,Transformer 模型會去找出和「bank」關聯性較高的單字,從而找出「river」和其高度關聯,判斷「bank」的意思為河堤。
不過,在一開始對於句子裡的所有單字進行判斷時,Transformer模型需要無條件將同樣的運算量用在每個單詞,因此 Google 新發表了 Universal Transformer 模型,讓系統可以只在歧異性較高的單詞上花費較多的運算資源,使得分析過程變得更「動態」,資源分配也更有效率。
Transformer推出時,Google 研究指出其翻譯品質較先前的機器學習模型提高2.0 個 BLEU(Bilingual Evaluation Understudy)值,而在相同的訓練方式和訓練資料下,Universal Transformer 模型比起 Transformer 又提高了 0.9 個BLEU 值,整體翻譯品質和去年相比,相對提升 50%。
Universal Transformer模型提供大規模語言處理(如機器翻譯)一個更快、更準確的解決方案,翻譯結果更接近真人翻譯,而 Google 團隊也會持續努力提升Universal Transformer 模型效能。
原文連結
註:本文為 2018 9 14 日師大翻譯所臉書粉絲專頁貼文
想知道更多有趣的翻譯書,或想透過書本更深入了解翻譯生活嗎? 喜歡閱讀、熱愛翻譯的你,千萬不能錯過我們的好書分享與深度介紹!
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
「要做翻譯就坐下來翻譯啊,何必跑到學校學呢?」 「都已經是譯者了,還有必要上課進修嗎?」 如果你也有過類似的疑問,不妨看看新加坡政府即將為該國翻譯產業祭出的新計畫吧! . 你也想提升自己的翻譯能力嗎?快來報名台師大口筆譯推廣班!(最新資訊請鎖定師大翻譯所臉書粉絲專頁)
「要做翻譯就坐下來翻譯啊,何必跑到學校學呢?」 「都已經是譯者了,還有必要上課進修嗎?」 如果你也有過類似的疑問,不妨看看新加坡政府即將為該國翻譯產業祭出的新計畫吧! . 你也想提升自己的翻譯能力嗎?快來報名台師大口筆譯推廣班!(最新資訊請鎖定師大翻譯所臉書粉絲專頁)
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 120 中使用 Google Gemini 將一段英文翻譯成法文,那我不是法文專業者,怎麼知道翻譯的好不好呢? 我可以使用 B
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 擁有先進的翻譯能力,能夠捕捉多種語言中單字序列的意思,在第四章中,我們將介紹一些關鍵的翻譯概念,並探討它們在 Google Trax、Googl
機器其實不是像人類這樣一的單字對應一個單字去翻譯, 而是使用「編碼器 Encoder」與「解碼器 Decoder」來做語言之間的翻譯。 其中編碼器的任務,是「閱讀 Read」與「處理 Process」完整的文本, 而解碼器的任務,則是「產生 Produced」翻譯過後的文本。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 33中,見識了基於 Transformer 的 Google 翻譯威力,評論如下: Google 翻譯似乎已經解決了 Corefer
在人工智能的發展歷程中,早期的研究主要側重於將解決問題的規則輸入計算機,試圖通過啟蒙運動理性的思路模擬人類的智能行為。然而,這條路逐漸變得艱難,因為規則過於繁多,無法應對複雜的情境和語境。在這個背景下,一些科學家轉向了神經網絡算法,試圖模擬人腦的感知能力。
在上一期「LLM 005|大語言模型是如何利用Transformer理解語言的?」我們提到,Transformer是大語言模型理解語言的關鍵。 而Transformer架構兩個主要的後代是BERT以及GPT。 BERT是bidirectional encoder representati
現代大語言模型建構於Transformer結構。 Transformer結構是源自於2017年著名論文 Attention Is All You Need的深度神經網路結構。 原始的Trasformer是為了機器翻譯發展,當初的任務是將英文翻譯成德文與法文。 Transformer
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 120 中使用 Google Gemini 將一段英文翻譯成法文,那我不是法文專業者,怎麼知道翻譯的好不好呢? 我可以使用 B
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 擁有先進的翻譯能力,能夠捕捉多種語言中單字序列的意思,在第四章中,我們將介紹一些關鍵的翻譯概念,並探討它們在 Google Trax、Googl
機器其實不是像人類這樣一的單字對應一個單字去翻譯, 而是使用「編碼器 Encoder」與「解碼器 Decoder」來做語言之間的翻譯。 其中編碼器的任務,是「閱讀 Read」與「處理 Process」完整的文本, 而解碼器的任務,則是「產生 Produced」翻譯過後的文本。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 33中,見識了基於 Transformer 的 Google 翻譯威力,評論如下: Google 翻譯似乎已經解決了 Corefer
在人工智能的發展歷程中,早期的研究主要側重於將解決問題的規則輸入計算機,試圖通過啟蒙運動理性的思路模擬人類的智能行為。然而,這條路逐漸變得艱難,因為規則過於繁多,無法應對複雜的情境和語境。在這個背景下,一些科學家轉向了神經網絡算法,試圖模擬人腦的感知能力。
在上一期「LLM 005|大語言模型是如何利用Transformer理解語言的?」我們提到,Transformer是大語言模型理解語言的關鍵。 而Transformer架構兩個主要的後代是BERT以及GPT。 BERT是bidirectional encoder representati
現代大語言模型建構於Transformer結構。 Transformer結構是源自於2017年著名論文 Attention Is All You Need的深度神經網路結構。 原始的Trasformer是為了機器翻譯發展,當初的任務是將英文翻譯成德文與法文。 Transformer
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大