【數據分析】| 如何轉職成為數據分析師? | #Kaggle #Python #PowerBI

更新於 發佈於 閱讀時間約 4 分鐘

Get Your First Certificate:

Python is a so powerful tool in data science and this course is helpful for reviewing basic concepts. Even though I still have a long way to my future goal in the data science field, consistency could give us a chance to achieve the goal.

✏ 3 things to keep in mind:

1. Using a list comprehension: Make people's life easier.
2. "Overwrites" might cause bugs: Make your coding life worst.
3. Starting coding is better than reading the concepts: trying to do something is the most useful to learn new things.
-

Learn by doing

There are two things that inspired me!

First, the data portfolio project makes candidates more chances who want to get into data science fields. In my personal experience, PowerBI and Tableau are easier to approach your first project.

In the contrast, Excel is a little bit too hard for me to handle huge datasets because we don't focus on learning Excel in my college data science course.

Second, start doing your own data science project is the smartest way to learn new concepts. I love the "black box" method which we only learn what we need and keep going for the next step.

In the end, my goal for next year is to find my passion for data analytics and start doing different side projects which can practice more analytics skills such as PowerBI, Docker and SQL, etc.

Overall, Thanks to these two influencers @DanMorgan and Alex Freberg.

If you want to learn more about data science, I really recommend watching his YouTube channel which can give people more inspiration.
-
好的,你們怎麼看待未來的工作生態與生活模式呢?
我是 Dodson,一個分享男生穿搭、熱愛抱石的數據分析師。
如果喜歡我的文章,歡迎按讚、留言、分享,最後訂閱起來!
創作有價,實踐起來!
為什麼會看到廣告
avatar-img
70會員
124內容數
• Data Analyst x Dcard 7000+ Creator • 分享 #個人品牌 |#AI工具| #Lifestyle
留言
avatar-img
留言分享你的想法!

































































Dodson的沙龍 的其他內容
「機器人」與「AI人工智慧」是這個時代的趨勢,眾多的高科技公司與產業正積極的研發這一個領域,這次特斯拉就在 2022 AI Day 展示他們的 Tesla Optimus ,在影片中,機器人完成了澆花、搬運貨物、以及工廠生產線的零件操作等等。 筆者對於「機器人時代來臨」非常的興奮,可是究竟「機器人」
這篇文章會以提供學習素材以及方法的方式,分享給讀者們,也希望自己可以跟著適合自己步調的學習地圖走得更遠。 我也是數據分析初心者,所以需要一本武功秘笈,可惜沒有適合我的絕世武功,那不如我們自創一本! 程式語言: Python or R: SQL(資料庫相關) 統計分析: 統計基礎:
Do you know what “Data Analytics” is? 當你以為成為數據分析師是高薪且入門容易的職業時, 你已經進入了學無止境的不歸路…… 另外,大數據(Big data)的解釋就交給維基百科。 統計背景(Statistical background):
「機器人」與「AI人工智慧」是這個時代的趨勢,眾多的高科技公司與產業正積極的研發這一個領域,這次特斯拉就在 2022 AI Day 展示他們的 Tesla Optimus ,在影片中,機器人完成了澆花、搬運貨物、以及工廠生產線的零件操作等等。 筆者對於「機器人時代來臨」非常的興奮,可是究竟「機器人」
這篇文章會以提供學習素材以及方法的方式,分享給讀者們,也希望自己可以跟著適合自己步調的學習地圖走得更遠。 我也是數據分析初心者,所以需要一本武功秘笈,可惜沒有適合我的絕世武功,那不如我們自創一本! 程式語言: Python or R: SQL(資料庫相關) 統計分析: 統計基礎:
Do you know what “Data Analytics” is? 當你以為成為數據分析師是高薪且入門容易的職業時, 你已經進入了學無止境的不歸路…… 另外,大數據(Big data)的解釋就交給維基百科。 統計背景(Statistical background):
你可能也想看
Google News 追蹤
Thumbnail
從範例學python的目標讀者: 針對剛進入的初學者,想學習Python語言。 有基礎本數學邏輯基礎即可。 從小遊戲學python的目標讀者: 針對已經有經驗的C/C++, Python, 或其他有程式基礎的讀者。 想實作一些小專案,從實做中學習如何分析需求、元件分拆、到底層實作
Thumbnail
Python擁有便攜性和通用性,適用於多種場景,同時具有全球通用性。Python在科技製造業、資料分析、人工智慧等領域有廣泛應用,對於理工科背景者而言有獨特的優勢。透過在線課程、自學書籍、實作專案,以及參與社群和開源專案,理工背景者可以達成從轉職進入Python程式領域的目標。
Thumbnail
Python轉職的三大階段包括基礎學習和建立作品集,再到打造出色的面試履歷。從具體目標設定到實際操作和團隊協作,都是成功的關鍵。建立多元且有深度的作品集,展示技術能力和解決問題的實力,能夠大幅提升面試成功率。透過不斷學習並優化自己的思維,可以發現更多職業機會。
Thumbnail
本文介紹瞭如何使用 Python pandas 進行資料分析,包括如何使用 corr() 函數針對數字類型的欄位進行分析,以及如何刪除不需要的欄位和取得想要的小數位數。
轉職數據分析師是一項需要長期努力的過程。對於文組生來說,由於缺乏數學、統計、程式設計等方面的基礎,在轉職過程中往往會面臨更多的挑戰。因此,制定一個合理的學習計劃,對於提高轉職成功率至關重要。 以下是一些規劃轉職數據分析師學習進度表的建議: 第一步:確認你的優勢和劣勢 在開始學習之前,我們首先要
Thumbnail
題目敘述 題目會給定一個python list形式的輸入,要求我們把它轉換成pandas dataframe的形式做輸出。並且指定column名稱分別為student_id, 和 age 題目的原文敘述 測試範例
Thumbnail
這是文科轉職數據工程師系列的第一篇文章。 許多人會在轉職前上許多數據分析課程,該怎麼選擇比較適合自己,但又不會噴錢呢? 這篇文章要介紹這個轉職過程前的準備工作。
Thumbnail
從範例學python的目標讀者: 針對剛進入的初學者,想學習Python語言。 有基礎本數學邏輯基礎即可。 從小遊戲學python的目標讀者: 針對已經有經驗的C/C++, Python, 或其他有程式基礎的讀者。 想實作一些小專案,從實做中學習如何分析需求、元件分拆、到底層實作
Thumbnail
Python擁有便攜性和通用性,適用於多種場景,同時具有全球通用性。Python在科技製造業、資料分析、人工智慧等領域有廣泛應用,對於理工科背景者而言有獨特的優勢。透過在線課程、自學書籍、實作專案,以及參與社群和開源專案,理工背景者可以達成從轉職進入Python程式領域的目標。
Thumbnail
Python轉職的三大階段包括基礎學習和建立作品集,再到打造出色的面試履歷。從具體目標設定到實際操作和團隊協作,都是成功的關鍵。建立多元且有深度的作品集,展示技術能力和解決問題的實力,能夠大幅提升面試成功率。透過不斷學習並優化自己的思維,可以發現更多職業機會。
Thumbnail
本文介紹瞭如何使用 Python pandas 進行資料分析,包括如何使用 corr() 函數針對數字類型的欄位進行分析,以及如何刪除不需要的欄位和取得想要的小數位數。
轉職數據分析師是一項需要長期努力的過程。對於文組生來說,由於缺乏數學、統計、程式設計等方面的基礎,在轉職過程中往往會面臨更多的挑戰。因此,制定一個合理的學習計劃,對於提高轉職成功率至關重要。 以下是一些規劃轉職數據分析師學習進度表的建議: 第一步:確認你的優勢和劣勢 在開始學習之前,我們首先要
Thumbnail
題目敘述 題目會給定一個python list形式的輸入,要求我們把它轉換成pandas dataframe的形式做輸出。並且指定column名稱分別為student_id, 和 age 題目的原文敘述 測試範例
Thumbnail
這是文科轉職數據工程師系列的第一篇文章。 許多人會在轉職前上許多數據分析課程,該怎麼選擇比較適合自己,但又不會噴錢呢? 這篇文章要介紹這個轉職過程前的準備工作。