製造業的未來趨勢推演 - 元宇宙與金屬加工製造業

更新於 2023/03/09閱讀時間約 8 分鐘

發揮一下想像力,這是您在一家金屬製造工廠工作的第一天,它已經實現無紙化,並且似乎正在順利連接機器並成為真正的數位製造工廠。在整個工廠中,您會看到精心佈置的儀表板,每個儀表板都顯示目前工作的進度;是否生產週期會提前、會準時或是落後於計劃。一切都在滴答作響,盡可能順利。
然後警報響起,自動雷射切割系統剛剛停機。原來是負責更換切割台的叉車卡住了。切割台上骯髒的切割片和不理想的切割條件,造成切割時產生過多的熔渣,這些的液體金屬將鐵板與切割台黏在一起了。
切割機意外停機造成的生產延宕,隨著時間的推移,其他生產機器單位也開始發出缺料的警報!

機器學習 Machine Learning System

理想情況下,將正確的傳感器放在正確的位置,使用於開發有用信息和情報的數據(包含上述案例中需要經常清潔的切割台與的定時正確的機台維護),上述故事的事故就會很少見到。
但理想的世界只存在理想之中,因此瞭解組織是如何應對不完美的世界這件事情就變得很重要。因此建模和仿真將發揮越來越重要的作用。
Richard Boyd 在美國金屬加工展Fabtech說過:20 世紀是關於電視圖像的。這是人類歷史上第一次,如果我們想了解世界上正在發生的事情,我們可以回顧它的鏡頭。而21 世紀將是模擬世紀。21 世紀將是關於建模和仿真的。我們可以運行模擬來預測可能發生的情況,然後決定要做什麼。
機器學習系統(Machine Learning System)可以映射組織中的一切,一旦AI檢測到有人試圖做某事,它就會說:哦,這是我們以前做過的類似事情,讓我把你和能幫助你做到這一點的人和內容聯繫起來。
這其實跟近期很夯的ChatGPT 與AI繪圖非常類似了。只是應用在生產製造端,讓機器學習人類遇到問題時會如何處理,爾後遇到問題,就用類似的處理方式處理。

AI人工智慧的製造工廠

AI人工智慧的發展,使機器學習成為可能被普及化的技術。
從前的人工智慧是人類通過告訴機器做什麼來實現人類工作的自動化。新的人工智慧則是機器學習。機器現在可以從大量的數據中,推測出屬於“它”的見解給人類參考。它還可以為人類和機器如何合作來實現生產目標提供自己的看法。”
舉例來說:
想像一個組裝工廠,每個工作人員身上都裝有電子跟踪器,不僅跟踪製造步驟,而且還準確跟踪該工作在每個工作站實際停留和移動的位置,在資料庫中這代表著數百個甚至數千個不同工件流經工廠時的零件路徑。
更進一步,我們把信息連同銷售信息、報價活動、噴漆時間、熱處理時間、外部加工要求以及其他所有信息一起提供給AI人工智慧。AI人工智慧將會根據上述的訊息來制定最佳的生產流程。它將以新的方式拆分工作並發布訂單。例如運行一項工作的 X 部分和另一項工作的 W 部分,然後在成型和半組裝後拆分工作以分離裝配單元。
這整個流程可能完全不直覺,作業 X 和 W 甚至可能需要不同的加工工具並需要更多的轉換時間。但是,我們會發現這看似不合理的調度卻在以後的工作中節省許多步驟,進而節省更多的時間。
因為 AI 可以在幾微秒內處理海量數據,所以這個不可能的時間表變成了現實。而且因為 AI 永遠不會停止讀取數據,所以整個生產流程會不斷的即時變動。而手動操作這些方式極其複雜且成本高昂,當然,上述的流程是極端理想化的狀況,完全沒有考量到意外狀況與設備的零件的損耗可能造成的加工誤差等,但很簡單的說明了 AI 智慧製造的潛力
現實的狀況也沒有太差,雖然上述的舉例現況還做不到,但AI瞬間檢查和分析大量數據所得到的結果,可以讓人類根據這些結果去調整整個產線,進而達到提高生產效率。因此技術的發展不會減少人類的存在意義,反而會增強每個人類決定的有效性,讓生產更有效率。

元宇宙如何與製造工廠拉上關係?

一間工廠中,我們有很多設備都是為不同類型需求而配置在現場的。生產個產品的方法與流程其實並不止一種,我們在生產中遇到的問題也時常不同。各種問題的解決都是即刻發生然後需要即刻解決的,我們人類遇到各種狀況就是能夠利用各種的方式去排除問題,這就是人類管工廠的價值發揮作用的地方。單純的工業4.0其實只是智慧製造,並沒有納入考量人類的行為。
我們要如何將人類的判斷邏輯,行動行為納入實際的生產系統的管轄中? 讓機器學會人類遇到問題的解決方式? Try and Error?
從製造商的角度來看,利用既有產線來模擬這件事情的代價太大,因此元宇宙變成了可行的方向。在元宇宙中,我們就能將人類行為的影響添加到系統中,進而進行生產的模擬,並讓AI學習。
實務上的可行性乍看之下還是遙不可及。畢竟我們很容易理解如何在元宇宙中建立一個實體的工廠,只要把機器設備的3D圖檔放置其中,寫入動作方式,添加或修改有關生產參數的變數,讓工廠的運作結果與真實世界一致。這是很好理解的。若有玩過minecraft應該更能夠理解。
但是當我們要考慮將人類行為模型導入產線管理中時,我們眉頭就會皺起來,不知道如何下手。
我們換個產業思考一下,其實追蹤與建立人類行為的模型並不是一門新科學,這個科學已經發展很久,且與我們日常息息相關。Facebook會記錄你的使用行為,推播你有興趣的廣告;Google會記錄你的搜尋習慣,讓你可以更快找到你想要的資料。他們都是利用追蹤與建立人類行為的資料庫,利用AI分析我們使用者的行為,然後投其所好。這就是一個已經存在的實例。
目前尚未發現有人把這個技術放到製造產線中,甚至連意圖也沒有。我認為最主要的原因是做這件事情的成本太高,看起來無利可圖。但會不會十幾年或幾十年後世界改變了,將既有產線自動化,導入AI管理,並納入該公司工廠的員工工作行為的因子模型變成一門超熱門的生意?
AI

總結

今天,在一個製造工廠,如果問工廠內的師傅他們是如何學會執行某項複雜任務的,無論是發現折彎機上的創新彎曲順序還是、無論是改善排版流程降低切割的生產時間、無論是設計新治具來減少銲接的工時等,他們通常會說“經驗”。
隨著師傅的“經驗”不斷的被“數字化”;隨著AI資料庫越來越大;隨著Machine Leaning越來越強大,未來的單一生產機器可能會自動建議操作者修改生產方式來增加效率。
當所有的機器都具備自我學習機制後,並且建構在同一個互聯網下,下一步就是由AI來統合所有的生產數據,產生出優化產線的報告,交由工廠管理者下決斷。
再下一步則可能是將工廠交由AI管理,而且AI會根據收集到的資料,未來的AI工廠可能會自動修改生產流程,並不斷優化。
最後一步就是導入人為因素,讓機器學習如何模仿人類思考,當產線遇到問題時,不會當機,而是會模仿人類的思考邏輯去排除,然後讓產線重新上線。而且可能AI工廠的電腦會在產線中故意輸入一個問題(如果把原本的火焰切割改為電漿切割;如果把外包的折床加工改為自己做...),然後查看所有內容並提出自己關於解決方案的假設,以及根據它所看到的活動模式提出改善製程的需求。
我覺得,有可能實現。
下週是TIMTOS台北國際工具機展,看到Richard Boyd去年在美國FABTECH展發表有關【元宇宙與製造業】一文,進而思索未來製造業可能性的有感而發。
如同Richard Boyd所提現在我們就應該思考:人類應該做什麼,什麼應該留給自動化?優化結果的正確平衡是什麼?
〈全文完〉

關於本專欄
每個月 NT$ 150。 持續的閱讀在B2B業務職涯中,實務上會遇到的案例、實作方法與業務觀念、工作觀念,保證物有所值。
Podcast 有通勤聽Podcast習慣的,可在各大Podcast收聽平台搜尋"業務可頌 | B2B外銷業務工作筆記"。即時的工作內容分享。
如果喜歡本篇文章,還請按下右邊欄位〔訂閱〕、〔追蹤〕或〔贊助〕。
業務可頌 杭特
為什麼會看到廣告
B2B業務行銷 筆者是專職於國際B2B業務行銷的工作者,以旅行國家或城市來說,在台灣應該是PR99的等級,數十個國家,數百個城市。在2024年末改任職於一間德國公司,也是擔任國際B2B業務行銷的工作。本專欄主要分享B2B工作中的案例、觀念、經驗,與在德國公司的工作日常。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
本篇參與的主題活動
在 web3 急速發展的情況下,仍可以有不少的可能性尚待發掘,現有的項目試驗也許亦會發現很多新的問題。還望日後的 web3 內容平台,可以在吸收了種種的經驗後,發展得更為茁壯。
- 區塊鏈:不同的區塊鏈無法互通。 - 冷錢包:平常處於離線狀態,又稱為離線錢包,主要功能為儲存私鑰,交易時才會連上網路,所以安全性較高,載體可以為隨身碟、卡片或是紙條。 - 助記詞:由 12 或 24 個英文單字組成,屬於私鑰的一種形式,最好使用紙筆紀錄,不要拍照或上傳以免洩漏。
Shopify 的 NFT 計畫,無疑的印證了我們之前所說的 - NFT 不會單純只是個泡沫,而是一個在未來數位世界有重大價值的技術。而這個旅程,現在也只是剛開始而已,以進度條來說,大概都還沒有跑到 10% 的位置。未來數年,電子商務世界會如何應用 NFT 這個技術,真的是非常值得關注。
在2022年新的第一天裡,想來和大家聊聊,我的NFT創作歷程與一直有所關注的幾位優秀的台灣創作者。希望能提供給還在觀望的朋友們,一些心得和下定決心的勇氣!
要說未來2022年網路商業趨勢確定會發生的事,許多應用是有跡可循,但你繞不開的buzzword像是web3、元宇宙和NFT與創作者經濟,他們之中有些是明顯純粹的過high狂熱,有些則是會演變成在各行各業都擴大使用的應用,這篇我想跟大家聊聊我的看法。
人工智能 (AI) 應用程序現在比您想像的要普遍得多。 德勤報告 發現,40%的企業已經制定全組織的AI策略。 目前在商業應用中常見的就是AI臉部辨識、自然語言處理 (NLP)、更快的計算和各種其他底層流程發揮著重要作用。 數字人類完全是使用人工智能技術構建的,對元宇宙的景觀至關重要。
在 web3 急速發展的情況下,仍可以有不少的可能性尚待發掘,現有的項目試驗也許亦會發現很多新的問題。還望日後的 web3 內容平台,可以在吸收了種種的經驗後,發展得更為茁壯。
- 區塊鏈:不同的區塊鏈無法互通。 - 冷錢包:平常處於離線狀態,又稱為離線錢包,主要功能為儲存私鑰,交易時才會連上網路,所以安全性較高,載體可以為隨身碟、卡片或是紙條。 - 助記詞:由 12 或 24 個英文單字組成,屬於私鑰的一種形式,最好使用紙筆紀錄,不要拍照或上傳以免洩漏。
Shopify 的 NFT 計畫,無疑的印證了我們之前所說的 - NFT 不會單純只是個泡沫,而是一個在未來數位世界有重大價值的技術。而這個旅程,現在也只是剛開始而已,以進度條來說,大概都還沒有跑到 10% 的位置。未來數年,電子商務世界會如何應用 NFT 這個技術,真的是非常值得關注。
在2022年新的第一天裡,想來和大家聊聊,我的NFT創作歷程與一直有所關注的幾位優秀的台灣創作者。希望能提供給還在觀望的朋友們,一些心得和下定決心的勇氣!
要說未來2022年網路商業趨勢確定會發生的事,許多應用是有跡可循,但你繞不開的buzzword像是web3、元宇宙和NFT與創作者經濟,他們之中有些是明顯純粹的過high狂熱,有些則是會演變成在各行各業都擴大使用的應用,這篇我想跟大家聊聊我的看法。
人工智能 (AI) 應用程序現在比您想像的要普遍得多。 德勤報告 發現,40%的企業已經制定全組織的AI策略。 目前在商業應用中常見的就是AI臉部辨識、自然語言處理 (NLP)、更快的計算和各種其他底層流程發揮著重要作用。 數字人類完全是使用人工智能技術構建的,對元宇宙的景觀至關重要。
你可能也想看
Google News 追蹤
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
分享瑪莎在臺商工廠、美商貿易公司以及日商零售公司的外派生活經驗,包含了不同公司的外派工作安排和真實生活等多個方面。不同類型的企業文化和產業中,外派的狀態會有所差異。把眼光拉遠來看,沒有孰優孰劣,端看你的現有條件和理想生活。在相同的企業管理命題中,可以看到不同文化的處理方式。
Thumbnail
最近透過廣告發現南僑水晶不僅有超好用的水晶肥皂,還有出食器洗滌液體皁。這款食器洗滌液體皁不只可以拿來清洗碗盤油膩,還可以拿來清潔蔬果,讓我忍不住就馬上買了一罐來試試。南僑水晶食器洗滌液體皁使用心得分享,快來瞭解一下!
生產計劃和排程是製造業成功的基石。MES系統可以大大提高這些方面的效能。通過實時監控生產過程,MES系統可以幫助製造商更好地理解訂單狀況、資源可用性和交付時間。這使得更好的排程和計劃成為可能,並確保生產線的流暢運行。 此外,MES系統還可以根據實際生產情況進行動態調整,以應對突發情況,例如機器故障
Thumbnail
製造業PMI在今年第一季的表現出乎意料地好,讓人眼睛一亮。然而,到了第二季,這個指數卻出現了下滑的情況。這樣的變化讓人不禁懷疑,製造業的表現是否只是一時的火花,還是有持續的可能性?然而,六月份的數據卻讓人看到了希望......
Thumbnail
推薦度:★★★★☆拋接球、肢體展演及默劇,演繹一般中產階級的尋常生活,展示the elephant in the room及其荒謬性。
Thumbnail
2023 年全球的工業公司將有 70% 實現 B2B 電子商務,相較於當今卻僅有 50%。在此為大家呈現第一份比較分析。 - 湯瑪斯.R.卡特勒
Thumbnail
今天我們來聊要怎麼達到多樣少量的製程境界,也就是上次快速切換文章中提到最終目的是從大量製造走向大量客製。 若我們把前面所有的技能都落實了,那麼接下來就需要超市化生產來控制庫存,由於我所學的應用沒有這方面案例,因此就先跟大家提個概念。我們先來看看以下二張圖: 一:推式生產 許多工廠接到訂單後,將所有資
Thumbnail
先介紹下工業4.0 以我實際到過近20家個工廠經驗,人們只要一聽到工業4.0就會連結自動化機器取代人力以及大量生產這兩個主要目的,就跟聽到精實生產就連結減少編制一樣。在傳產的認知中,兩者最大的共同點莫過於都是用來突顯: 未來的傳統產業,將不需要這麼多人力資源 而在這些工廠裡,自己經手評估與看過的新機
Thumbnail
今天要談的這篇是模具倉1S專案的續集:模具倉2S。 延伸閱讀:精實生產裡面最簡單的課程 — 1S整理 在1S專案進行中,就一直想要把這標籤給改掉,好不容易1S專案得到認同,想繼續趁勝追擊,但這種看單點不看全面的改善,終究還是被上司點醒。
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
分享瑪莎在臺商工廠、美商貿易公司以及日商零售公司的外派生活經驗,包含了不同公司的外派工作安排和真實生活等多個方面。不同類型的企業文化和產業中,外派的狀態會有所差異。把眼光拉遠來看,沒有孰優孰劣,端看你的現有條件和理想生活。在相同的企業管理命題中,可以看到不同文化的處理方式。
Thumbnail
最近透過廣告發現南僑水晶不僅有超好用的水晶肥皂,還有出食器洗滌液體皁。這款食器洗滌液體皁不只可以拿來清洗碗盤油膩,還可以拿來清潔蔬果,讓我忍不住就馬上買了一罐來試試。南僑水晶食器洗滌液體皁使用心得分享,快來瞭解一下!
生產計劃和排程是製造業成功的基石。MES系統可以大大提高這些方面的效能。通過實時監控生產過程,MES系統可以幫助製造商更好地理解訂單狀況、資源可用性和交付時間。這使得更好的排程和計劃成為可能,並確保生產線的流暢運行。 此外,MES系統還可以根據實際生產情況進行動態調整,以應對突發情況,例如機器故障
Thumbnail
製造業PMI在今年第一季的表現出乎意料地好,讓人眼睛一亮。然而,到了第二季,這個指數卻出現了下滑的情況。這樣的變化讓人不禁懷疑,製造業的表現是否只是一時的火花,還是有持續的可能性?然而,六月份的數據卻讓人看到了希望......
Thumbnail
推薦度:★★★★☆拋接球、肢體展演及默劇,演繹一般中產階級的尋常生活,展示the elephant in the room及其荒謬性。
Thumbnail
2023 年全球的工業公司將有 70% 實現 B2B 電子商務,相較於當今卻僅有 50%。在此為大家呈現第一份比較分析。 - 湯瑪斯.R.卡特勒
Thumbnail
今天我們來聊要怎麼達到多樣少量的製程境界,也就是上次快速切換文章中提到最終目的是從大量製造走向大量客製。 若我們把前面所有的技能都落實了,那麼接下來就需要超市化生產來控制庫存,由於我所學的應用沒有這方面案例,因此就先跟大家提個概念。我們先來看看以下二張圖: 一:推式生產 許多工廠接到訂單後,將所有資
Thumbnail
先介紹下工業4.0 以我實際到過近20家個工廠經驗,人們只要一聽到工業4.0就會連結自動化機器取代人力以及大量生產這兩個主要目的,就跟聽到精實生產就連結減少編制一樣。在傳產的認知中,兩者最大的共同點莫過於都是用來突顯: 未來的傳統產業,將不需要這麼多人力資源 而在這些工廠裡,自己經手評估與看過的新機
Thumbnail
今天要談的這篇是模具倉1S專案的續集:模具倉2S。 延伸閱讀:精實生產裡面最簡單的課程 — 1S整理 在1S專案進行中,就一直想要把這標籤給改掉,好不容易1S專案得到認同,想繼續趁勝追擊,但這種看單點不看全面的改善,終究還是被上司點醒。