製造業的未來趨勢推演 - 元宇宙與金屬加工製造業

更新於 發佈於 閱讀時間約 8 分鐘

發揮一下想像力,這是您在一家金屬製造工廠工作的第一天,它已經實現無紙化,並且似乎正在順利連接機器並成為真正的數位製造工廠。在整個工廠中,您會看到精心佈置的儀表板,每個儀表板都顯示目前工作的進度;是否生產週期會提前、會準時或是落後於計劃。一切都在滴答作響,盡可能順利。
然後警報響起,自動雷射切割系統剛剛停機。原來是負責更換切割台的叉車卡住了。切割台上骯髒的切割片和不理想的切割條件,造成切割時產生過多的熔渣,這些的液體金屬將鐵板與切割台黏在一起了。
切割機意外停機造成的生產延宕,隨著時間的推移,其他生產機器單位也開始發出缺料的警報!

機器學習 Machine Learning System

理想情況下,將正確的傳感器放在正確的位置,使用於開發有用信息和情報的數據(包含上述案例中需要經常清潔的切割台與的定時正確的機台維護),上述故事的事故就會很少見到。
但理想的世界只存在理想之中,因此瞭解組織是如何應對不完美的世界這件事情就變得很重要。因此建模和仿真將發揮越來越重要的作用。
Richard Boyd 在美國金屬加工展Fabtech說過:20 世紀是關於電視圖像的。這是人類歷史上第一次,如果我們想了解世界上正在發生的事情,我們可以回顧它的鏡頭。而21 世紀將是模擬世紀。21 世紀將是關於建模和仿真的。我們可以運行模擬來預測可能發生的情況,然後決定要做什麼。
機器學習系統(Machine Learning System)可以映射組織中的一切,一旦AI檢測到有人試圖做某事,它就會說:哦,這是我們以前做過的類似事情,讓我把你和能幫助你做到這一點的人和內容聯繫起來。
這其實跟近期很夯的ChatGPT 與AI繪圖非常類似了。只是應用在生產製造端,讓機器學習人類遇到問題時會如何處理,爾後遇到問題,就用類似的處理方式處理。

AI人工智慧的製造工廠

AI人工智慧的發展,使機器學習成為可能被普及化的技術。
從前的人工智慧是人類通過告訴機器做什麼來實現人類工作的自動化。新的人工智慧則是機器學習。機器現在可以從大量的數據中,推測出屬於“它”的見解給人類參考。它還可以為人類和機器如何合作來實現生產目標提供自己的看法。”
舉例來說:
想像一個組裝工廠,每個工作人員身上都裝有電子跟踪器,不僅跟踪製造步驟,而且還準確跟踪該工作在每個工作站實際停留和移動的位置,在資料庫中這代表著數百個甚至數千個不同工件流經工廠時的零件路徑。
更進一步,我們把信息連同銷售信息、報價活動、噴漆時間、熱處理時間、外部加工要求以及其他所有信息一起提供給AI人工智慧。AI人工智慧將會根據上述的訊息來制定最佳的生產流程。它將以新的方式拆分工作並發布訂單。例如運行一項工作的 X 部分和另一項工作的 W 部分,然後在成型和半組裝後拆分工作以分離裝配單元。
這整個流程可能完全不直覺,作業 X 和 W 甚至可能需要不同的加工工具並需要更多的轉換時間。但是,我們會發現這看似不合理的調度卻在以後的工作中節省許多步驟,進而節省更多的時間。
因為 AI 可以在幾微秒內處理海量數據,所以這個不可能的時間表變成了現實。而且因為 AI 永遠不會停止讀取數據,所以整個生產流程會不斷的即時變動。而手動操作這些方式極其複雜且成本高昂,當然,上述的流程是極端理想化的狀況,完全沒有考量到意外狀況與設備的零件的損耗可能造成的加工誤差等,但很簡單的說明了 AI 智慧製造的潛力
現實的狀況也沒有太差,雖然上述的舉例現況還做不到,但AI瞬間檢查和分析大量數據所得到的結果,可以讓人類根據這些結果去調整整個產線,進而達到提高生產效率。因此技術的發展不會減少人類的存在意義,反而會增強每個人類決定的有效性,讓生產更有效率。

元宇宙如何與製造工廠拉上關係?

一間工廠中,我們有很多設備都是為不同類型需求而配置在現場的。生產個產品的方法與流程其實並不止一種,我們在生產中遇到的問題也時常不同。各種問題的解決都是即刻發生然後需要即刻解決的,我們人類遇到各種狀況就是能夠利用各種的方式去排除問題,這就是人類管工廠的價值發揮作用的地方。單純的工業4.0其實只是智慧製造,並沒有納入考量人類的行為。
我們要如何將人類的判斷邏輯,行動行為納入實際的生產系統的管轄中? 讓機器學會人類遇到問題的解決方式? Try and Error?
從製造商的角度來看,利用既有產線來模擬這件事情的代價太大,因此元宇宙變成了可行的方向。在元宇宙中,我們就能將人類行為的影響添加到系統中,進而進行生產的模擬,並讓AI學習。
實務上的可行性乍看之下還是遙不可及。畢竟我們很容易理解如何在元宇宙中建立一個實體的工廠,只要把機器設備的3D圖檔放置其中,寫入動作方式,添加或修改有關生產參數的變數,讓工廠的運作結果與真實世界一致。這是很好理解的。若有玩過minecraft應該更能夠理解。
但是當我們要考慮將人類行為模型導入產線管理中時,我們眉頭就會皺起來,不知道如何下手。
我們換個產業思考一下,其實追蹤與建立人類行為的模型並不是一門新科學,這個科學已經發展很久,且與我們日常息息相關。Facebook會記錄你的使用行為,推播你有興趣的廣告;Google會記錄你的搜尋習慣,讓你可以更快找到你想要的資料。他們都是利用追蹤與建立人類行為的資料庫,利用AI分析我們使用者的行為,然後投其所好。這就是一個已經存在的實例。
目前尚未發現有人把這個技術放到製造產線中,甚至連意圖也沒有。我認為最主要的原因是做這件事情的成本太高,看起來無利可圖。但會不會十幾年或幾十年後世界改變了,將既有產線自動化,導入AI管理,並納入該公司工廠的員工工作行為的因子模型變成一門超熱門的生意?
AI

總結

今天,在一個製造工廠,如果問工廠內的師傅他們是如何學會執行某項複雜任務的,無論是發現折彎機上的創新彎曲順序還是、無論是改善排版流程降低切割的生產時間、無論是設計新治具來減少銲接的工時等,他們通常會說“經驗”。
隨著師傅的“經驗”不斷的被“數字化”;隨著AI資料庫越來越大;隨著Machine Leaning越來越強大,未來的單一生產機器可能會自動建議操作者修改生產方式來增加效率。
當所有的機器都具備自我學習機制後,並且建構在同一個互聯網下,下一步就是由AI來統合所有的生產數據,產生出優化產線的報告,交由工廠管理者下決斷。
再下一步則可能是將工廠交由AI管理,而且AI會根據收集到的資料,未來的AI工廠可能會自動修改生產流程,並不斷優化。
最後一步就是導入人為因素,讓機器學習如何模仿人類思考,當產線遇到問題時,不會當機,而是會模仿人類的思考邏輯去排除,然後讓產線重新上線。而且可能AI工廠的電腦會在產線中故意輸入一個問題(如果把原本的火焰切割改為電漿切割;如果把外包的折床加工改為自己做...),然後查看所有內容並提出自己關於解決方案的假設,以及根據它所看到的活動模式提出改善製程的需求。
我覺得,有可能實現。
下週是TIMTOS台北國際工具機展,看到Richard Boyd去年在美國FABTECH展發表有關【元宇宙與製造業】一文,進而思索未來製造業可能性的有感而發。
如同Richard Boyd所提現在我們就應該思考:人類應該做什麼,什麼應該留給自動化?優化結果的正確平衡是什麼?
〈全文完〉

關於本專欄
每個月 NT$ 150。 持續的閱讀在B2B業務職涯中,實務上會遇到的案例、實作方法與業務觀念、工作觀念,保證物有所值。
Podcast 有通勤聽Podcast習慣的,可在各大Podcast收聽平台搜尋"業務可頌 | B2B外銷業務工作筆記"。即時的工作內容分享。
如果喜歡本篇文章,還請按下右邊欄位〔訂閱〕、〔追蹤〕或〔贊助〕。
業務可頌 杭特
B2B業務行銷 筆者是專職於國際B2B業務行銷的工作者,以旅行國家或城市來說,在台灣應該是PR99的等級,數十個國家,數百個城市。在2024年末改任職於一間德國公司,也是擔任國際B2B業務行銷的工作。本專欄主要分享B2B工作中的案例、觀念、經驗,與在德國公司的工作日常。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
本篇參與的主題活動
在 web3 急速發展的情況下,仍可以有不少的可能性尚待發掘,現有的項目試驗也許亦會發現很多新的問題。還望日後的 web3 內容平台,可以在吸收了種種的經驗後,發展得更為茁壯。
- 區塊鏈:不同的區塊鏈無法互通。 - 冷錢包:平常處於離線狀態,又稱為離線錢包,主要功能為儲存私鑰,交易時才會連上網路,所以安全性較高,載體可以為隨身碟、卡片或是紙條。 - 助記詞:由 12 或 24 個英文單字組成,屬於私鑰的一種形式,最好使用紙筆紀錄,不要拍照或上傳以免洩漏。
Shopify 的 NFT 計畫,無疑的印證了我們之前所說的 - NFT 不會單純只是個泡沫,而是一個在未來數位世界有重大價值的技術。而這個旅程,現在也只是剛開始而已,以進度條來說,大概都還沒有跑到 10% 的位置。未來數年,電子商務世界會如何應用 NFT 這個技術,真的是非常值得關注。
在2022年新的第一天裡,想來和大家聊聊,我的NFT創作歷程與一直有所關注的幾位優秀的台灣創作者。希望能提供給還在觀望的朋友們,一些心得和下定決心的勇氣!
要說未來2022年網路商業趨勢確定會發生的事,許多應用是有跡可循,但你繞不開的buzzword像是web3、元宇宙和NFT與創作者經濟,他們之中有些是明顯純粹的過high狂熱,有些則是會演變成在各行各業都擴大使用的應用,這篇我想跟大家聊聊我的看法。
人工智能 (AI) 應用程序現在比您想像的要普遍得多。 德勤報告 發現,40%的企業已經制定全組織的AI策略。 目前在商業應用中常見的就是AI臉部辨識、自然語言處理 (NLP)、更快的計算和各種其他底層流程發揮著重要作用。 數字人類完全是使用人工智能技術構建的,對元宇宙的景觀至關重要。
在 web3 急速發展的情況下,仍可以有不少的可能性尚待發掘,現有的項目試驗也許亦會發現很多新的問題。還望日後的 web3 內容平台,可以在吸收了種種的經驗後,發展得更為茁壯。
- 區塊鏈:不同的區塊鏈無法互通。 - 冷錢包:平常處於離線狀態,又稱為離線錢包,主要功能為儲存私鑰,交易時才會連上網路,所以安全性較高,載體可以為隨身碟、卡片或是紙條。 - 助記詞:由 12 或 24 個英文單字組成,屬於私鑰的一種形式,最好使用紙筆紀錄,不要拍照或上傳以免洩漏。
Shopify 的 NFT 計畫,無疑的印證了我們之前所說的 - NFT 不會單純只是個泡沫,而是一個在未來數位世界有重大價值的技術。而這個旅程,現在也只是剛開始而已,以進度條來說,大概都還沒有跑到 10% 的位置。未來數年,電子商務世界會如何應用 NFT 這個技術,真的是非常值得關注。
在2022年新的第一天裡,想來和大家聊聊,我的NFT創作歷程與一直有所關注的幾位優秀的台灣創作者。希望能提供給還在觀望的朋友們,一些心得和下定決心的勇氣!
要說未來2022年網路商業趨勢確定會發生的事,許多應用是有跡可循,但你繞不開的buzzword像是web3、元宇宙和NFT與創作者經濟,他們之中有些是明顯純粹的過high狂熱,有些則是會演變成在各行各業都擴大使用的應用,這篇我想跟大家聊聊我的看法。
人工智能 (AI) 應用程序現在比您想像的要普遍得多。 德勤報告 發現,40%的企業已經制定全組織的AI策略。 目前在商業應用中常見的就是AI臉部辨識、自然語言處理 (NLP)、更快的計算和各種其他底層流程發揮著重要作用。 數字人類完全是使用人工智能技術構建的,對元宇宙的景觀至關重要。
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
1️⃣ 序論:製造業的未來 在全球經濟快速變化和技術不斷演進的背景下,製造業正迎來一場前所未有的變革。隨著人工智慧(AI)、大數據(Big Data)、物聯網(IoT)等技術的成熟,傳統製造模式正逐漸被智慧工廠(Smart Factory)取代。智慧工廠 是一種融合數位化技術與自動化系統的新型製造
Thumbnail
單純?一點都不單純,筆者上篇的示意圖,嚴格說算傳統產業,若是現在講的科技業,情況更為複雜。因為,每一道製程,每一個零件,由於其精密程度提高,限制更加嚴重。我們可以理解為工具機需求變高,愈發精密的零件需要更精密的工具機,而製程從毫米到微米再到奈米,能夠生產的廠商更少。
Thumbnail
1. 製造業 2. 自動化產業 3. 航太產業 4. 汽車產業 5. 能源產業 6. 半導體產業 1. 學習機器學習和深度學習,應用於機械設計和製造流程優化 2. 結合AI與機器視覺,用於品質檢測和缺陷識別 3. 學習預測性維護技術,利用AI預測設備故障 4. 應用AI於機器人控制和自動化系統
Thumbnail
AI的世界充滿了創新和潛力,涵蓋了許多領域,包括但不限於機器學習,自然語言處理、電腦視覺和機器人技術。AI對人類社會的影響是複雜而多層面的,既帶來了巨大的機遇,也提出了新的挑戰。社會需要在技術發展和倫理規範之間找到平衡,確保AI技術的應用能夠真正造福人類。
Thumbnail
通用型AI還沒那麼快出現 所以說人類的工作要全面被取代 目前不會發生 但如果是"部分"的專精工作 可以被模組化 高重複性 可被預測 與其說取代人類工作 不如說 AI可以替代部分"流程" 如果有專屬於法律條文聊天機器人 或是 專屬於公司內部規章的聊天機器人 遇到問題 或是不確定的流程 直接詢
Thumbnail
*從Embedded World看到,AI在工業領域的發展,會比原本預期再慢一點。 *目前在消費端、服務端,例如顧問業者、客服、buy now pay later等業務,有很多AI功能、LLM模型導入。 --初階的碼農容易被AI取代。 *工業端,最早是PLC編程,到IPC,未來在IPC裡面 會
Thumbnail
  21世紀是網路演算法的時代,人們提供數據,AI(人工智慧)演算數據,在AI可連結、可更新的強大優勢下,人們部分的工作將被AI取代。但科技取代工作不是現在才有的問題,早在18世紀工業革命(1769瓦特改良蒸汽機),自動化、機械化的生產方式便逐漸取代看天吃飯、手工勞動的生產方式。雖然當時也有
Thumbnail
人工智慧(AI)在當今社會扮演著越來越重要的角色,然而,我們應該關注的不僅僅是AI潛在可取代的工作,更重要的是AI能夠帶來怎樣人類無法達到的價值。本文深入探討AI的成本與發展潛力,並提出對於AI未來發展的看法。
Thumbnail
鋁生產中的人工智慧:預測性維護 啟翔輕金屬認為,在鋁生產中使用人工智慧的主要好處是能夠預測和預防設備故障。透過分析來自感測器和其他監控系統的數據,人工智慧演算法可以識別表明設備何時可能發生故障的模式。啟翔輕金屬認為,這使得維修團隊能夠主動安排維修和更換,減少停機時間並防止代價高昂的故障。預測性維護
Thumbnail
隨著生成式 AI (Generative AI ) 2023年大紅大紫,許多人也正熱烈討論 AI 到底會不會讓人失業,這是個很有趣的話題,因為科技變革千百年來從未停止過,現在發生的事絕對不是新鮮事,我們就來從留聲機被發明到被反對,甚至被視為危害文明的歷史反思當前的科技趨勢。 本文可以讓你學到什
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
1️⃣ 序論:製造業的未來 在全球經濟快速變化和技術不斷演進的背景下,製造業正迎來一場前所未有的變革。隨著人工智慧(AI)、大數據(Big Data)、物聯網(IoT)等技術的成熟,傳統製造模式正逐漸被智慧工廠(Smart Factory)取代。智慧工廠 是一種融合數位化技術與自動化系統的新型製造
Thumbnail
單純?一點都不單純,筆者上篇的示意圖,嚴格說算傳統產業,若是現在講的科技業,情況更為複雜。因為,每一道製程,每一個零件,由於其精密程度提高,限制更加嚴重。我們可以理解為工具機需求變高,愈發精密的零件需要更精密的工具機,而製程從毫米到微米再到奈米,能夠生產的廠商更少。
Thumbnail
1. 製造業 2. 自動化產業 3. 航太產業 4. 汽車產業 5. 能源產業 6. 半導體產業 1. 學習機器學習和深度學習,應用於機械設計和製造流程優化 2. 結合AI與機器視覺,用於品質檢測和缺陷識別 3. 學習預測性維護技術,利用AI預測設備故障 4. 應用AI於機器人控制和自動化系統
Thumbnail
AI的世界充滿了創新和潛力,涵蓋了許多領域,包括但不限於機器學習,自然語言處理、電腦視覺和機器人技術。AI對人類社會的影響是複雜而多層面的,既帶來了巨大的機遇,也提出了新的挑戰。社會需要在技術發展和倫理規範之間找到平衡,確保AI技術的應用能夠真正造福人類。
Thumbnail
通用型AI還沒那麼快出現 所以說人類的工作要全面被取代 目前不會發生 但如果是"部分"的專精工作 可以被模組化 高重複性 可被預測 與其說取代人類工作 不如說 AI可以替代部分"流程" 如果有專屬於法律條文聊天機器人 或是 專屬於公司內部規章的聊天機器人 遇到問題 或是不確定的流程 直接詢
Thumbnail
*從Embedded World看到,AI在工業領域的發展,會比原本預期再慢一點。 *目前在消費端、服務端,例如顧問業者、客服、buy now pay later等業務,有很多AI功能、LLM模型導入。 --初階的碼農容易被AI取代。 *工業端,最早是PLC編程,到IPC,未來在IPC裡面 會
Thumbnail
  21世紀是網路演算法的時代,人們提供數據,AI(人工智慧)演算數據,在AI可連結、可更新的強大優勢下,人們部分的工作將被AI取代。但科技取代工作不是現在才有的問題,早在18世紀工業革命(1769瓦特改良蒸汽機),自動化、機械化的生產方式便逐漸取代看天吃飯、手工勞動的生產方式。雖然當時也有
Thumbnail
人工智慧(AI)在當今社會扮演著越來越重要的角色,然而,我們應該關注的不僅僅是AI潛在可取代的工作,更重要的是AI能夠帶來怎樣人類無法達到的價值。本文深入探討AI的成本與發展潛力,並提出對於AI未來發展的看法。
Thumbnail
鋁生產中的人工智慧:預測性維護 啟翔輕金屬認為,在鋁生產中使用人工智慧的主要好處是能夠預測和預防設備故障。透過分析來自感測器和其他監控系統的數據,人工智慧演算法可以識別表明設備何時可能發生故障的模式。啟翔輕金屬認為,這使得維修團隊能夠主動安排維修和更換,減少停機時間並防止代價高昂的故障。預測性維護
Thumbnail
隨著生成式 AI (Generative AI ) 2023年大紅大紫,許多人也正熱烈討論 AI 到底會不會讓人失業,這是個很有趣的話題,因為科技變革千百年來從未停止過,現在發生的事絕對不是新鮮事,我們就來從留聲機被發明到被反對,甚至被視為危害文明的歷史反思當前的科技趨勢。 本文可以讓你學到什