AI說書 - 從0開始 - 303 | WordPiece Tokenization 介紹與偵測

更新於 發佈於 閱讀時間約 3 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


WordPiece 和 Byte Pair Encoding (BPE) 一樣,以單個字符的詞彙表開始,這樣可以確保任何詞都能被 Tokenization,接著,訓練過程會構建 Subword,並使用優化過程來最小化 Subword 的數量。


當訓練過程完成後,Tokenizer 會將序列分解為其詞彙表中最長的單詞序列,那些不在原始單詞開頭的 Subword 會帶有前綴 "##",例如,“undo” 會被表示為 ["un", "##do"],請記住這一點,因為它有助於我們識別 WordPiece Tokenizer。


Tokenizer 對於訓練 Transformer 模型會有強烈的影響,選擇正確的 Tokenizer 往往會從一開始就決定模型的結果。


以下撰寫程式來分辨,Tokenizer 究竟是 WordPiece 還是 BPE:

import requests

!curl -L https://raw.githubusercontent.com/Denis2054/Transformers-for-NLP-and-Computer-Vision-3rd-Edition/main/Chapter10/merges.txt --output "merges.txt"
!curl -L https://raw.githubusercontent.com/Denis2054/Transformers-for-NLP-and-Computer-Vision-3rd-Edition/main/Chapter10/vocab.txt --output "vocab.json"

from transformers import RobertaTokenizer
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
vocab = tokenizer.get_vocab()
is_wordpiece = any(token.startswith('##') for token in vocab)

if is_wordpiece:
print("Tokenizer type: WordPiece")
else:
print("Tokenizer type: BPE")


結果為:

raw-image


留言
avatar-img
留言分享你的想法!
avatar-img
Learn AI 不 BI
225會員
641內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
Learn AI 不 BI的其他內容
2025/01/29
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在本章中,我們測量了 Tokenization 對 Transformer 模型後續層的影響,Transformer 模型只能關注堆疊的嵌入層和位置編碼子層中的 Tok
2025/01/29
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在本章中,我們測量了 Tokenization 對 Transformer 模型後續層的影響,Transformer 模型只能關注堆疊的嵌入層和位置編碼子層中的 Tok
2025/01/28
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 想要控管 Token ID 映射的品質,有鑑於此,先定義,先定義 Tokenizer: model_name = 'bert-base-uncased' token
Thumbnail
2025/01/28
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 想要控管 Token ID 映射的品質,有鑑於此,先定義,先定義 Tokenizer: model_name = 'bert-base-uncased' token
Thumbnail
2025/01/27
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 304 | WordPiece Tokenization 介紹與偵測 講 WordPiece Tokenizer,而 AI說書 - 從
Thumbnail
2025/01/27
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 304 | WordPiece Tokenization 介紹與偵測 講 WordPiece Tokenizer,而 AI說書 - 從
Thumbnail
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧目前手上有的素材: 載入文本並執行 Tokenization:AI說書 - 從0開始 - 314 | 載入文本並執行 Tokenization 文本處理以降低
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 304 | WordPiece Tokenization 介紹與偵測 講 WordPiece Tokenizer,而 AI說書 - 從
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 304 | WordPiece Tokenization 介紹與偵測 講 WordPiece Tokenizer,而 AI說書 - 從
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下撰寫程式來分辨,Tokenizer 究竟是 WordPiece 還是 BPE: from transformers import BertTokenizer m
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下撰寫程式來分辨,Tokenizer 究竟是 WordPiece 還是 BPE: from transformers import BertTokenizer m
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 WordPiece 和 Byte Pair Encoding (BPE) 一樣,以單個字符的詞彙表開始,這樣可以確保任何詞都能被 Tokenization,接著,訓練過
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 WordPiece 和 Byte Pair Encoding (BPE) 一樣,以單個字符的詞彙表開始,這樣可以確保任何詞都能被 Tokenization,接著,訓練過
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝、AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示、AI說書 -
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝、AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示、AI說書 -
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 及 AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示,我們繼續
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 及 AI說書 - 從0開始 - 296 | 各 Tokenizer 之展示,我們繼續
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 安裝的各種 Tokenizer,我們來展示其用處: Sentence Toke
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 295 | 各 Tokenizer 之優勢與安裝 安裝的各種 Tokenizer,我們來展示其用處: Sentence Toke
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News